scholarly journals Device Applications of Synthetic Topological Insulator Nanostructures

Electronics ◽  
2018 ◽  
Vol 7 (10) ◽  
pp. 225 ◽  
Author(s):  
Chenxi Yue ◽  
Shuye Jiang ◽  
Hao Zhu ◽  
Lin Chen ◽  
Qingqing Sun ◽  
...  

This review briefly describes the development of synthetic topological insulator materials in the application of advanced electronic devices. As a new class of quantum matter, topological insulators with insulating bulk and conducting surface states have attracted attention in more and more research fields other than condensed matter physics due to their intrinsic physical properties, which provides an excellent basis for novel nanoelectronic, optoelectronic, and spintronic device applications. In comparison to the mechanically exfoliated samples, the newly emerging topological insulator nanostructures prepared with various synthetical approaches are more intriguing because the conduction contribution of the surface states can be significantly enhanced due to the larger surface-to-volume ratio, better manifesting the unique properties of the gapless surface states. So far, these synthetic topological insulator nanostructures have been implemented in different electrically accessible device platforms via electrical, magnetic and optical characterizations for material investigations and device applications, which will be introduced in this review.

2019 ◽  
Vol 11 (36) ◽  
pp. 33285-33291 ◽  
Author(s):  
Min Tang ◽  
Jun-Ying Zhang ◽  
Song Bi ◽  
Zhi-Ling Hou ◽  
Xiao-Hong Shao ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matthew J. Gilbert

AbstractWithin the broad and deep field of topological materials, there are an ever-increasing number of materials that harbor topological phases. While condensed matter physics continues to probe the exotic physical properties resulting from the existence of topological phases in new materials, there exists a suite of “well-known” topological materials in which the physical properties are well-characterized, such as Bi2Se3 and Bi2Te3. In this context, it is then appropriate to ask if the unique properties of well-explored topological materials may have a role to play in applications that form the basis of a new paradigm in information processing devices and architectures. To accomplish such a transition from physical novelty to application based material, the potential of topological materials must be disseminated beyond the reach of condensed matter to engender interest in diverse areas such as: electrical engineering, materials science, and applied physics. Accordingly, in this review, we assess the state of current electronic device applications and contemplate the future prospects of topological materials from an applied perspective. More specifically, we will review the application of topological materials to the general areas of electronic and magnetic device technologies with the goal of elucidating the potential utility of well-characterized topological materials in future information processing applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Tongshuai Zhu ◽  
Huaiqiang Wang ◽  
Haijun Zhang ◽  
Dingyu Xing

AbstractAxion was postulated as an elementary particle to solve the strong charge conjugation and parity puzzle, and later axion was also considered to be a possible component of dark matter in the universe. However, the existence of axions in nature has not been confirmed. Interestingly, axions arise out of pseudoscalar fields derived from the Chern–Simons theory in condensed matter physics. In antiferromagnetic insulators, the axion field can become dynamical due to spin-wave excitations and exhibits rich exotic phenomena, such as axion polariton. However, antiferromagnetic dynamical axion insulator has yet been experimentally identified in realistic materials. Very recently, MnBi2Te4 was discovered to be an antiferromagnetic topological insulator with a quantized static axion field protected by inversion symmetry $${\mathcal{P}}$$ P and magnetic-crystalline symmetry $${\mathcal{S}}$$ S . Here, we studied MnBi2Te4 films in which both the $${\mathcal{P}}$$ P and $${\mathcal{S}}$$ S symmetries are spontaneously broken and found that substantially enhanced dynamical magnetoelectric effects could be realized through tuning the thickness of MnBi2Te4 films, temperature, or element substitutions. Our results show that thin films of MnBi2Te4 and related compounds could provide a promising material platform to experimentally study axion electrodynamics.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
José Luis Hernando ◽  
Yuriko Baba ◽  
Elena Díaz ◽  
Francisco Domínguez-Adame

AbstractWe theoretically address the impact of a random distribution of non-magnetic impurities on the electron states formed at the surface of a topological insulator. The interaction of electrons with the impurities is accounted for by a separable pseudo-potential method that allows us to obtain closed expressions for the density of states. Spectral properties of surface states are assessed by means of the Green’s function averaged over disorder realisations. For comparison purposes, the configurationally averaged Green’s function is calculated by means of two different self-consistent methods, namely the self-consistent Born approximation (SCBA) and the coherent potential approximation (CPA). The latter is often regarded as the best single-site theory for the study of the spectral properties of disordered systems. However, although a large number of works employ the SCBA for the analysis of many-impurity scattering on the surface of a topological insulator, CPA studies of the same problem are scarce in the literature. In this work, we find that the SCBA overestimates the impact of the random distribution of impurities on the spectral properties of surface states compared to the CPA predictions. The difference is more pronounced when increasing the magnitude of the disorder.


2014 ◽  
Vol 16 (6) ◽  
pp. 065016 ◽  
Author(s):  
K Miyamoto ◽  
T Okuda ◽  
M Nurmamat ◽  
M Nakatake ◽  
H Namatame ◽  
...  

Nano Letters ◽  
2017 ◽  
Vol 17 (2) ◽  
pp. 980-984 ◽  
Author(s):  
Yinming Shao ◽  
Kirk W. Post ◽  
Jhih-Sheng Wu ◽  
Siyuan Dai ◽  
Alex J. Frenzel ◽  
...  

2016 ◽  
Vol 4 (37) ◽  
pp. 8750-8757 ◽  
Author(s):  
Yi-zhen Jia ◽  
Wei-xiao Ji ◽  
Chang-wen Zhang ◽  
Ping Li ◽  
Miao-juan Ren ◽  
...  

Band topology and Rashba spin splitting (RSS) are two extensively explored yet exotic properties in condensed matter physics.


2016 ◽  
Vol 94 (16) ◽  
Author(s):  
B. Y. Kang ◽  
Chul-Hee Min ◽  
S. S. Lee ◽  
M. S. Song ◽  
K. K. Cho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document