scholarly journals Secure Intelligent Vehicular Network Using Fog Computing

Electronics ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 455 ◽  
Author(s):  
Samuel Kofi Erskine ◽  
Khaled M. Elleithy

VANET (vehicular ad hoc network) has a main objective to improve driver safety and traffic efficiency. The intermittent exchange of real-time safety message delivery in VANET has become an urgent concern due to DoS (denial of service) and smart and normal intrusions (SNI) attacks. The intermittent communication of VANET generates huge amount of data which requires typical storage and intelligence infrastructure. Fog computing (FC) plays an important role in storage, computation, and communication needs. In this research, fog computing (FC) integrates with hybrid optimization algorithms (OAs) including the Cuckoo search algorithm (CSA), firefly algorithm (FA), firefly neural network, and the key distribution establishment (KDE) for authenticating both the network level and the node level against all attacks for trustworthiness in VANET. The proposed scheme is termed “Secure Intelligent Vehicular Network using fog computing” (SIVNFC). A feedforward back propagation neural network (FFBP-NN), also termed the firefly neural, is used as a classifier to distinguish between the attacking vehicles and genuine vehicles. The SIVNFC scheme is compared with the Cuckoo, the FA, and the firefly neural network to evaluate the quality of services (QoS) parameters such as jitter and throughput.

2016 ◽  
Vol 2016 ◽  
pp. 1-28 ◽  
Author(s):  
Jiani Heng ◽  
Chen Wang ◽  
Xuejing Zhao ◽  
Jianzhou Wang

Power load forecasting always plays a considerable role in the management of a power system, as accurate forecasting provides a guarantee for the daily operation of the power grid. It has been widely demonstrated in forecasting that hybrid forecasts can improve forecast performance compared with individual forecasts. In this paper, a hybrid forecasting approach, comprising Empirical Mode Decomposition, CSA (Cuckoo Search Algorithm), and WNN (Wavelet Neural Network), is proposed. This approach constructs a more valid forecasting structure and more stable results than traditional ANN (Artificial Neural Network) models such as BPNN (Back Propagation Neural Network), GABPNN (Back Propagation Neural Network Optimized by Genetic Algorithm), and WNN. To evaluate the forecasting performance of the proposed model, a half-hourly power load in New South Wales of Australia is used as a case study in this paper. The experimental results demonstrate that the proposed hybrid model is not only simple but also able to satisfactorily approximate the actual power load and can be an effective tool in planning and dispatch for smart grids.


Author(s):  
Sucheta V Kolekar ◽  
Radhika M Pai ◽  
Manohara Pai M M

The major requirement of present e-learning system is to provide a personalized interface with adaptiveness. This is possible to provide by analyzing the learning behaviors of the learners in the e-learning portal through Web Usage Mining (WUM). In this paper, a method is proposed where the learning behavior of the learner is captured using web logs and the learning styles are categorized according to Felder-Silverman Learning Style Model (FSLSM). Each category of FSLSM learner is provided with the respective content and interface that is required for the learner to learn. Fuzzy C Means (FCM) algorithm is used to cluster the captured data into FSLSM categories. Gravitational Search based Back Propagation Neural Network (GSBPNN) algorithm is used to predict the learning styles of the new learner. This algorithm is a modification of basic Back Propagation Neural Network (BPNN) algorithm that calculates the weights using Gravitation Search Algorithm (GSA). The algorithm is validated on the captured data and compared using various metrics with the basic BPNN algorithm. The result shows that the performance of GSBPNN algorithm is better than BPNN. Based on the identified learning style, the adaptive contents and interface can be provided to the learner.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jianmin Ban ◽  
Xinyu Pan ◽  
Ziqiang Bi ◽  
Minming Gu

This work presents an optimized probabilistic modeling methodology that facilitates the modeling of photovoltaic (PV) modules with measured data over a range of environmental conditions. The method applies cuckoo search to optimize kernel parameters, followed by electrical characteristics estimation via relevance vector machine. Unlike analytical modeling techniques, the proposed cuckoo search-relevance vector machine (CS-RVM) takes advantages of no required knowledge of internal PV parameters, more accurate estimation capability and less computational effort. A comparative study has been done among the electrical characteristics predicted by back-propagation neural network (BPNN), radial basis function neural network (RBFNN), support vector machine (SVM), Villalva's model, relevance vector machine (RVM), and the CS-RVM. Experimental results show that the proposed CS-RVM provides the best prediction in most scenarios.


Author(s):  
Yan Xiong ◽  
Jiatang Cheng

Background: The generator is a mechanical device that converts other forms of energy into electrical energy. It is widely used in industrial and agricultural production and daily life. Methods: To improve the accuracy of generator fault diagnosis, a fault classification method based on the bare-bones cuckoo search (BBCS) algorithm combined with an artificial neural network is proposed. For this BBCS method, the bare-bones strategy and the modified Levy flight are combined to alleviate premature convergence. After that, the typical fault features are obtained according to the vibration signal and current signal of the generator, and a hybrid diagnosis model based on the back-propagation (BP) neural network optimized by the proposed BBCS algorithm is established. Results: Experimental results indicate that BBCS exhibits better convergence performance in terms of solution quality and convergence rate. Furthermore, the hybrid diagnosis method has higher classification accuracy and can effectively identify generator faults. Conclusion: The proposed method seems effective for generator fault diagnosis.


Sign in / Sign up

Export Citation Format

Share Document