scholarly journals Quality Mapping of Offset Lithographic Printed Antenna Substrates and Electrodes by Millimeter-Wave Imaging

Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 674
Author(s):  
Jiao Zhang ◽  
Jianhua Tang ◽  
Wenfeng Sun ◽  
Yan Zhang ◽  
Xinke Wang ◽  
...  

Offset lithographic printed flexible antenna substrate boards and electrodes have attracted much attention recently due to the boost of flexible electronics. Unmanned quality inspection of these printed substrate boards and electrodes demands high-speed, large-scale and nondestructive methods, which is highly desired for manufacturing industries. The work here demonstrates two kinds of millimeter (mm)-wave imaging technologies for the quality (surface uniformity and functionality parameters) inspection of printed silver substrates and electrodes on paper and thin polyethylene film, respectively. One technology is a mm-wave line scanner system and the other is a terahertz-time domain spectroscopy-based charge-coupled device (CCD) imaging system. The former shows the ability of detecting transmitted mm-wave amplitude signals only; its detection is fast in a second time scale and the system shows great potential for the inspection of large-area printed surface uniformity. The latter technology achieves high spatial resolution images of up to hundreds of micrometers at the cost of increased inspection time, in a time scale of tens of seconds. With the exception of absorption rate information, the latter technology offers additional phase information, which can be used to work out 2D permittivity distribution. Moreover, its uniformity is vital for the antenna performance. Additionally, the results demonstrate that compression rolling treatment significantly improves the uniformity of printed silver surfaces and enhances the substrate’s permittivity values.


2021 ◽  
Vol 13 (15) ◽  
pp. 2877
Author(s):  
Yu Tao ◽  
Siting Xiong ◽  
Susan J. Conway ◽  
Jan-Peter Muller ◽  
Anthony Guimpier ◽  
...  

The lack of adequate stereo coverage and where available, lengthy processing time, various artefacts, and unsatisfactory quality and complexity of automating the selection of the best set of processing parameters, have long been big barriers for large-area planetary 3D mapping. In this paper, we propose a deep learning-based solution, called MADNet (Multi-scale generative Adversarial u-net with Dense convolutional and up-projection blocks), that avoids or resolves all of the above issues. We demonstrate the wide applicability of this technique with the ExoMars Trace Gas Orbiter Colour and Stereo Surface Imaging System (CaSSIS) 4.6 m/pixel images on Mars. Only a single input image and a coarse global 3D reference are required, without knowing any camera models or imaging parameters, to produce high-quality and high-resolution full-strip Digital Terrain Models (DTMs) in a few seconds. In this paper, we discuss technical details of the MADNet system and provide detailed comparisons and assessments of the results. The resultant MADNet 8 m/pixel CaSSIS DTMs are qualitatively very similar to the 1 m/pixel HiRISE DTMs. The resultant MADNet CaSSIS DTMs display excellent agreement with nested Mars Reconnaissance Orbiter Context Camera (CTX), Mars Express’s High-Resolution Stereo Camera (HRSC), and Mars Orbiter Laser Altimeter (MOLA) DTMs at large-scale, and meanwhile, show fairly good correlation with the High-Resolution Imaging Science Experiment (HiRISE) DTMs for fine-scale details. In addition, we show how MADNet outperforms traditional photogrammetric methods, both on speed and quality, for other datasets like HRSC, CTX, and HiRISE, without any parameter tuning or re-training of the model. We demonstrate the results for Oxia Planum (the landing site of the European Space Agency’s Rosalind Franklin ExoMars rover 2023) and a couple of sites of high scientific interest.



2007 ◽  
Vol 17 (02) ◽  
pp. 239-249 ◽  
Author(s):  
Hua Zhong ◽  
Albert Redo-Sanchez ◽  
Xi-Cheng Zhang

We report the sensing and imaging of explosive related chemical and bio-chemical materials by using terahertz time domain spectroscopy (THz-TDS) at standoff distance. The 0.82 THz absorption peak of RDX is observed at a distance up to 30 m away from the emitter and receiver. Multiple absorption features of RDX, 2,4-DNT and Glutamic Acid are identified by using a large scale 2-D imaging system. These results support the feasibility of using THz-TDS technique in remote sensing and detection of chemical materials.



MRS Advances ◽  
2017 ◽  
Vol 2 (60) ◽  
pp. 3749-3754
Author(s):  
Maria Kim ◽  
Changfeng Li ◽  
Jannatul Susoma ◽  
Juha Riikonen ◽  
Harri Lipsanen

ABSTRACTNext-generation electronic devices are expected to demonstrate greater utility, efficiency and durability. Meanwhile, plastics such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN) and variety of poly(para-xylylene) polymers enable transformational advantages to device shape, flexibility, weight, transparency and recyclability. Exhibiting a combination of outstanding mechanical, electrical, optical, and chemical properties of graphene with the plastic substrates could propose ideal material for the future flexible electronics. Chemical vapor deposition (CVD) allows cost-effective fabrication of a high-quality large-area graphene films, however, the critical issue is clean and noninvasive transfer of the films onto a desired substrate. The water-based delamination of CVD grown graphene on Cu can be considered as a “green” transfer process utilizing only hot deionized water. We investigated a method requiring only two essential steps: coating of 6-inch monolayer CVD graphene with transparent and flexible polymer, and Cu delamination in hot water. Proposed method is inexpensive, reproducible, environmentally friendly, waste-free and suitable for large-scale, high quality graphene. The transfer process demonstrated films with enhanced charge carrier mobility, high uniformity, free of mechanical defects, and sheet resistance as low as ∼50 Ω/sq with 96.5 % transparency at 550 nm wavelength.



2009 ◽  
Author(s):  
Peng Yao ◽  
Christopher A. Schuetz ◽  
Shouyuan Shi ◽  
Julien Macario ◽  
Rownak Shireen ◽  
...  


2018 ◽  
Vol 41 (1) ◽  
pp. 431-452 ◽  
Author(s):  
Siegfried Weisenburger ◽  
Alipasha Vaziri

The mammalian brain is a densely interconnected network that consists of millions to billions of neurons. Decoding how information is represented and processed by this neural circuitry requires the ability to capture and manipulate the dynamics of large populations at high speed and high resolution over a large area of the brain. Although the use of optical approaches by the neuroscience community has rapidly increased over the past two decades, most microscopy approaches are unable to record the activity of all neurons comprising a functional network across the mammalian brain at relevant temporal and spatial resolutions. In this review, we survey the recent development in optical technologies for Ca2+imaging in this regard and provide an overview of the strengths and limitations of each modality and its potential for scalability. We provide guidance from the perspective of a biological user driven by the typical biological applications and sample conditions. We also discuss the potential for future advances and synergies that could be obtained through hybrid approaches or other modalities.



Author(s):  
Gary S. Settles ◽  
Jeremy R. Benwood ◽  
Joseph A. Gatto

This paper is about shock wave propagation inside an aircraft fuselage, caused either by a terrorist device or by an accidental explosion. The concern over blasts inside airframes, stemming from past terrorist attacks on commercial aviation using concealed explosives, continues unabated and extends to luggage, passengers, and air cargo. In earlier publications by the present authors, it was noted that all previous aviation security studies lacked optical shock imaging, the principal tool of explosion and shock wave research. In an effort to correct this, high-speed schlieren shock wave cinematography methods on a large scale are demonstrated here for aircraft hardening studies. This capability is used to examine shock propagation in realistic aircraft interior scenarios, as well as to carry out some basic experiments toward an improved understanding of internal blast wave behavior.



2014 ◽  
Vol 34 (4) ◽  
pp. 279-338 ◽  
Author(s):  
Shamim Ahmad

Abstract With the rich experience of developing silicon devices over a period of the last six decades, it is easy to assess the suitability of a new material for device applications by examining charge carrier injection, transport, and extraction across a practically realizable architecture; surface passivation; and packaging and reliability issues besides the feasibility of preparing mechanically robust wafer/substrate of single-crystal or polycrystalline/amorphous thin films. For material preparation, parameters such as purification of constituent materials, crystal growth, and thin-film deposition with minimum defects/disorders are equally important. Further, it is relevant to know whether conventional semiconductor processes, already known, would be useable directly or would require completely new technologies. Having found a likely candidate after such a screening, it would be necessary to identify a specific area of application against an existing list of materials available with special reference to cost reduction considerations in large-scale production. Various families of organic semiconductors are reviewed here, especially with the objective of using them in niche areas of large-area electronic displays, flexible organic electronics, and organic photovoltaic solar cells. While doing so, it appears feasible to improve mobility and stability by adjusting π-conjugation and modifying the energy band-gap. Higher conductivity nanocomposites, formed by blending with chemically conjugated C-allotropes and metal nanoparticles, open exciting methods of designing flexible contact/interconnects for organic and flexible electronics as can be seen from the discussion included here.



2000 ◽  
Vol 179 ◽  
pp. 205-208
Author(s):  
Pavel Ambrož ◽  
Alfred Schroll

AbstractPrecise measurements of heliographic position of solar filaments were used for determination of the proper motion of solar filaments on the time-scale of days. The filaments have a tendency to make a shaking or waving of the external structure and to make a general movement of whole filament body, coinciding with the transport of the magnetic flux in the photosphere. The velocity scatter of individual measured points is about one order higher than the accuracy of measurements.



1988 ◽  
Author(s):  
P. BUSHNELL ◽  
W. CAMPBELL ◽  
H. WAINAUSKI


Sign in / Sign up

Export Citation Format

Share Document