scholarly journals Closing the Wearable Gap—Part III: Use of Stretch Sensors in Detecting Ankle Joint Kinematics During Unexpected and Expected Slip and Trip Perturbations

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1083 ◽  
Author(s):  
Harish Chander ◽  
Ethan Stewart ◽  
David Saucier ◽  
Phuoc Nguyen ◽  
Tony Luczak ◽  
...  

Background: An induced loss of balance resulting from a postural perturbation has been reported as the primary source for postural instability leading to falls. Hence; early detection of postural instability with novel wearable sensor-based measures may aid in reducing falls and fall-related injuries. The purpose of the study was to validate the use of a stretchable soft robotic sensor (SRS) to detect ankle joint kinematics during both unexpected and expected slip and trip perturbations. Methods: Ten participants (age: 23.7 ± 3.13 years; height: 170.47 ± 8.21 cm; mass: 82.86 ± 23.4 kg) experienced a counterbalanced exposure of an unexpected slip, an unexpected trip, an expected slip, and an expected trip using treadmill perturbations. Ankle joint kinematics for dorsiflexion and plantarflexion were quantified using three-dimensional (3D) motion capture through changes in ankle joint range of motion and using the SRS through changes in capacitance when stretched due to ankle movements during the perturbations. Results: A greater R-squared and lower root mean square error in the linear regression model was observed in comparing ankle joint kinematics data from motion capture with stretch sensors. Conclusions: Results from the study demonstrated that 71.25% of the trials exhibited a minimal error of less than 4.0 degrees difference from the motion capture system and a greater than 0.60 R-squared value in the linear model; suggesting a moderate to high accuracy and minimal errors in comparing SRS to a motion capture system. Findings indicate that the stretch sensors could be a feasible option in detecting ankle joint kinematics during slips and trips.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4240
Author(s):  
Byong Hun Kim ◽  
Sung Hyun Hong ◽  
In Wook Oh ◽  
Yang Woo Lee ◽  
In Ho Kee ◽  
...  

Gait analysis has historically been implemented in laboratory settings only with expensive instruments; yet, recently, efforts to develop and integrate wearable sensors into clinical applications have been made. A limited number of previous studies have been conducted to validate inertial measurement units (IMUs) for measuring ankle joint kinematics, especially with small movement ranges. Therefore, the purpose of this study was to validate the ability of available IMUs to accurately measure the ankle joint angles by comparing the ankle joint angles measured using a wearable device with those obtained using a motion capture system during running. Ten healthy subjects participated in the study. The intraclass correlation coefficient (ICC) and standard error of measurement were calculated for reliability, whereas the Pearson coefficient correlation was performed for validity. The results showed that the day-to-day reliability was excellent (0.974 and 0.900 for sagittal and frontal plane, respectively), and the validity was good in both sagittal (r = 0.821, p < 0.001) and frontal (r = 0.835, p < 0.001) planes for ankle joints. In conclusion, we suggest that the developed device could be used as an alternative tool for the 3D motion capture system for assessing ankle joint kinematics.





Author(s):  
Gunjan Patel ◽  
Rajani Mullerpatan ◽  
Bela Agarwal ◽  
Triveni Shetty ◽  
Rajdeep Ojha ◽  
...  

Wearable inertial sensor-based motion analysis systems are promising alternatives to standard camera-based motion capture systems for the measurement of gait parameters and joint kinematics. These wearable sensors, unlike camera-based gold standard systems, find usefulness in outdoor natural environment along with confined indoor laboratory-based environment due to miniature size and wireless data transmission. This study reports validation of our developed (i-Sens) wearable motion analysis system against standard motion capture system. Gait analysis was performed at self-selected speed on non-disabled volunteers in indoor ( n = 15) and outdoor ( n = 8) environments. Two i-Sens units were placed at the level of knee and hip along with passive markers (for indoor study only) for simultaneous 3D motion capture using a motion capture system. Mean absolute percentage error (MAPE) was computed for spatiotemporal parameters from the i-Sens system versus the motion capture system as a true reference. Mean and standard deviation of kinematic data for a gait cycle were plotted for both systems against normative data. Joint kinematics data were analyzed to compute the root mean squared error (RMSE) and Pearson’s correlation coefficient. Kinematic plots indicate a high degree of accuracy of the i-Sens system with the reference system. Excellent positive correlation was observed between the two systems in terms of hip and knee joint angles (Indoor: hip 3.98° ± 1.03°, knee 6.48° ± 1.91°, Outdoor: hip 3.94° ± 0.78°, knee 5.82° ± 0.99°) with low RMSE. Reliability characteristics (defined using standard statistical thresholds of MAPE) of stride length, cadence, walking speed in both outdoor and indoor environment were well within the “Good” category. The i-Sens system has emerged as a potentially cost-effective, valid, accurate, and reliable alternative to expensive, standard motion capture systems for gait analysis. Further clinical trials using the i-Sens system are warranted on participants across different age groups.



Author(s):  
Jay Ryan U. Roldan ◽  
Dejan Milutinović ◽  
Zhi Li ◽  
Jacob Rosen

In this paper, we propose a quantitative approach based on identifying hand trajectory dissimilarities through the use of a multidimensional scaling (MDS) analysis. A high-rate motion capture system is used to gather three-dimensional (3D) trajectory data of healthy and stroke-impacted hemiparetic subjects. The mutual dissimilarity between any two trajectories is measured by the area between them. This area is used as a dissimilarity variable to create an MDS map. The map reveals a structure for measuring the difference and variability of individual trajectories and their groups. The results suggest that the recovery of hemiparetic subjects can be quantified by comparing the difference and variability of their individual MDS map points to the points from the cluster of healthy subject trajectories. Within the MDS map, we can identify fully recovered patients, those who are only functionally recovered, and those who are either in an early phase of, or are nonresponsive to the therapy.



Author(s):  
Pyeong-Gook Jung ◽  
Sehoon Oh ◽  
Gukchan Lim ◽  
Kyoungchul Kong

Motion capture systems play an important role in health-care and sport-training systems. In particular, there exists a great demand on a mobile motion capture system that enables people to monitor their health condition and to practice sport postures anywhere at any time. The motion capture systems with infrared or vision cameras, however, require a special setting, which hinders their application to a mobile system. In this paper, a mobile three-dimensional motion capture system is developed based on inertial sensors and smart shoes. Sensor signals are measured and processed by a mobile computer; thus, the proposed system enables the analysis and diagnosis of postures during outdoor sports, as well as indoor activities. The measured signals are transformed into quaternion to avoid the Gimbal lock effect. In order to improve the precision of the proposed motion capture system in an open and outdoor space, a frequency-adaptive sensor fusion method and a kinematic model are utilized to construct the whole body motion in real-time. The reference point is continuously updated by smart shoes that measure the ground reaction forces.



Author(s):  
Shohei Shibata ◽  
Kiyoshi Hirose ◽  
Takeshi Naruo ◽  
Yuichi Shimizu

This study aimed to (a) develop an algorithm that could estimate a baseball bat trajectory from the beginning of the swing to the follow-through phase during a practice swing without a ball and (b) evaluate the accuracy of the proposed method using a three-dimensional motion capture system. The sensor fusion using the adaptive Kalman filter for compensating velocity decreased the error of acceleration integration during the follow-through phase. Further, the three-dimensional bat trajectory in a global coordinate was estimated by combining the sensor fusion and compensation by motion characteristics. The three-dimensional bat trajectory from the swing beginning to the follow-through phase estimated by the proposed method was compared with the three-dimensional bat trajectory obtained by the three-dimensional motion capture system. The proposed method achieved a root mean square of the error of 7.72 km/h for velocity, which was less than the root mean square of the error (8.91 km/h) obtained by simple time integration of forward direction. These results indicate that the error by acceleration integration during the follow-through phase is compensated. The proposed method is, thus, deemed effective and can be used to evaluate baseball swing, including the follow-through phase, with high accuracy.



Sign in / Sign up

Export Citation Format

Share Document