scholarly journals Measurement of Ankle Joint Movements Using IMUs during Running

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4240
Author(s):  
Byong Hun Kim ◽  
Sung Hyun Hong ◽  
In Wook Oh ◽  
Yang Woo Lee ◽  
In Ho Kee ◽  
...  

Gait analysis has historically been implemented in laboratory settings only with expensive instruments; yet, recently, efforts to develop and integrate wearable sensors into clinical applications have been made. A limited number of previous studies have been conducted to validate inertial measurement units (IMUs) for measuring ankle joint kinematics, especially with small movement ranges. Therefore, the purpose of this study was to validate the ability of available IMUs to accurately measure the ankle joint angles by comparing the ankle joint angles measured using a wearable device with those obtained using a motion capture system during running. Ten healthy subjects participated in the study. The intraclass correlation coefficient (ICC) and standard error of measurement were calculated for reliability, whereas the Pearson coefficient correlation was performed for validity. The results showed that the day-to-day reliability was excellent (0.974 and 0.900 for sagittal and frontal plane, respectively), and the validity was good in both sagittal (r = 0.821, p < 0.001) and frontal (r = 0.835, p < 0.001) planes for ankle joints. In conclusion, we suggest that the developed device could be used as an alternative tool for the 3D motion capture system for assessing ankle joint kinematics.

Author(s):  
Byonghun Kim ◽  
Sunghyun Hong ◽  
Inwook Oh ◽  
Yangwoo Lee ◽  
Inho Kee ◽  
...  

Gait analysis has historically been implemented in laboratory settings with expensive instruments; however, recently, wearable sensors have allowed the integration into clinical applications and use in daily activities. Previous studies have shown poor validity of ankle joints using inertial measurement units (IMUs), especially for small movement ranges. The purpose of this study was to validate the ability of commercially available IMUs to accurately measure the ankle joint angles during running. Ten healthy subjects participated in the study. Validation was performed by comparing the ankle joint angles measured using the wearable device with those obtained using the gold standard motion capture system during running. Reliability was evaluated using the intraclass correlation coefficient and standard error of measurement, whereas validity was evaluated using Pearson coefficient correlation method. Day-to-day reliability was excellent in the two planes for ankle joints. Validity was good in both sagittal and frontal planes for ankle joints. The results suggested that the developed device might be used as an alternative tool to the 3D motion capture system.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1083 ◽  
Author(s):  
Harish Chander ◽  
Ethan Stewart ◽  
David Saucier ◽  
Phuoc Nguyen ◽  
Tony Luczak ◽  
...  

Background: An induced loss of balance resulting from a postural perturbation has been reported as the primary source for postural instability leading to falls. Hence; early detection of postural instability with novel wearable sensor-based measures may aid in reducing falls and fall-related injuries. The purpose of the study was to validate the use of a stretchable soft robotic sensor (SRS) to detect ankle joint kinematics during both unexpected and expected slip and trip perturbations. Methods: Ten participants (age: 23.7 ± 3.13 years; height: 170.47 ± 8.21 cm; mass: 82.86 ± 23.4 kg) experienced a counterbalanced exposure of an unexpected slip, an unexpected trip, an expected slip, and an expected trip using treadmill perturbations. Ankle joint kinematics for dorsiflexion and plantarflexion were quantified using three-dimensional (3D) motion capture through changes in ankle joint range of motion and using the SRS through changes in capacitance when stretched due to ankle movements during the perturbations. Results: A greater R-squared and lower root mean square error in the linear regression model was observed in comparing ankle joint kinematics data from motion capture with stretch sensors. Conclusions: Results from the study demonstrated that 71.25% of the trials exhibited a minimal error of less than 4.0 degrees difference from the motion capture system and a greater than 0.60 R-squared value in the linear model; suggesting a moderate to high accuracy and minimal errors in comparing SRS to a motion capture system. Findings indicate that the stretch sensors could be a feasible option in detecting ankle joint kinematics during slips and trips.


Author(s):  
Gunjan Patel ◽  
Rajani Mullerpatan ◽  
Bela Agarwal ◽  
Triveni Shetty ◽  
Rajdeep Ojha ◽  
...  

Wearable inertial sensor-based motion analysis systems are promising alternatives to standard camera-based motion capture systems for the measurement of gait parameters and joint kinematics. These wearable sensors, unlike camera-based gold standard systems, find usefulness in outdoor natural environment along with confined indoor laboratory-based environment due to miniature size and wireless data transmission. This study reports validation of our developed (i-Sens) wearable motion analysis system against standard motion capture system. Gait analysis was performed at self-selected speed on non-disabled volunteers in indoor ( n = 15) and outdoor ( n = 8) environments. Two i-Sens units were placed at the level of knee and hip along with passive markers (for indoor study only) for simultaneous 3D motion capture using a motion capture system. Mean absolute percentage error (MAPE) was computed for spatiotemporal parameters from the i-Sens system versus the motion capture system as a true reference. Mean and standard deviation of kinematic data for a gait cycle were plotted for both systems against normative data. Joint kinematics data were analyzed to compute the root mean squared error (RMSE) and Pearson’s correlation coefficient. Kinematic plots indicate a high degree of accuracy of the i-Sens system with the reference system. Excellent positive correlation was observed between the two systems in terms of hip and knee joint angles (Indoor: hip 3.98° ± 1.03°, knee 6.48° ± 1.91°, Outdoor: hip 3.94° ± 0.78°, knee 5.82° ± 0.99°) with low RMSE. Reliability characteristics (defined using standard statistical thresholds of MAPE) of stride length, cadence, walking speed in both outdoor and indoor environment were well within the “Good” category. The i-Sens system has emerged as a potentially cost-effective, valid, accurate, and reliable alternative to expensive, standard motion capture systems for gait analysis. Further clinical trials using the i-Sens system are warranted on participants across different age groups.


2015 ◽  
Vol 47 (1) ◽  
pp. 41-49 ◽  
Author(s):  
Isaac Estevan ◽  
Coral Falco ◽  
Julia Freedman Silvernail ◽  
Daniel Jandacka

AbstractIn taekwondo, there is a lack of consensus about how the kick sequence occurs. The aim of this study was to analyse the peak velocity (resultant and value in each plane) of lower limb segments (thigh, shank and foot), and the time to reach this peak velocity in the kicking lower limb during the execution of the roundhouse kick technique. Ten experienced taekwondo athletes (five males and five females; mean age of 25.3 ±5.1 years; mean experience of 12.9 ±5.3 years) participated voluntarily in this study performing consecutive kicking trials to a target located at their sternum height. Measurements for the kinematic analysis were performed using two 3D force plates and an eight camera motion capture system. The results showed that the proximal segment reached a lower peak velocity (resultant and in each plane) than distal segments (except the peak velocity in the frontal plane where the thigh and shank presented similar values), with the distal segment taking the longest to reach this peak velocity (p < 0.01). Also, at the instant every segment reached the peak velocity, the velocity of the distal segment was higher than the proximal one (p < 0.01). It provides evidence about the sequential movement of the kicking lower limb segments. In conclusion, during the roundhouse kick in taekwondo inter-segment motion seems to be based on a proximo-distal pattern.


2021 ◽  
Author(s):  
Md Sanzid Bin Hossain ◽  
Joseph Drantez ◽  
Hwan Choi ◽  
Zhishan Guo

<div>Measurement of human body movement is an essential step in biomechanical analysis. The current standard for human motion capture systems uses infrared cameras to track reflective markers placed on the subject. While these systems can accurately track joint kinematics, the analyses are spatially limited to the lab environment. Though Inertial Measurement Unit (IMU) can eliminate the spatial limitations of the motion capture system, those systems are impractical for use in daily living due to the need for many sensors, typically one per body segment. Due to the need for practical and accurate estimation of joint kinematics, this study implements a reduced number of IMU sensors and employs machine learning algorithm to map sensor data to joint angles. Our developed algorithm estimates hip, knee, and ankle angles in the sagittal plane using two shoe-mounted IMU sensors in different practical walking conditions: treadmill, level overground, stair, and slope conditions. Specifically, we proposed five deep learning networks that use combinations of Convolutional Neural Networks (CNN) and Gated Recurrent Unit (GRU) based Recurrent Neural Networks (RNN) as base learners for our framework. Using those five baseline models, we proposed a novel framework, DeepBBWAE-Net, that implements ensemble techniques such as bagging, boosting, and weighted averaging to improve kinematic predictions. DeepBBWAE-Net predicts joint kinematics for the three joint angles under all the walking conditions with a Root Mean Square Error (RMSE) 6.93-29.0% lower than base models individually. This is the first study that uses a reduced number of IMU sensors to estimate kinematics in multiple walking environments.</div>


2020 ◽  
Vol 29 (2) ◽  
pp. 162-167
Author(s):  
Roel De Ridder ◽  
Tine Willems ◽  
Jos Vanrenterghem ◽  
Ruth Verrelst ◽  
Cedric De Blaiser ◽  
...  

Context: Although taping has been proven effective in reducing ankle sprain events in individuals with chronic ankle instability, insight into the precise working mechanism remains limited. Objectives: To evaluate whether the use of taping changes ankle joint kinematics during a sagittal and frontal plane landing task in subjects with chronic ankle instability. Design: Repeated measure design. Setting: Laboratory setting. Participants: A total of 28 participants with chronic ankle instability performed a forward and side jump landing task in a nontaped and taped condition. The taping procedure consisted of a double “figure of 6” and a medial heel lock. Main Outcome Measures: 3D ankle joint kinematics was registered. Statistical parametric mapping was used to assess taping effect on mean ankle joint angles and angular velocity over the landing phase. Results: For both the forward and side jump, a less plantar flexed and a less inverted position of the ankle joint were found in the preparatory phase till around touchdown (TD) in the taped condition (P < .05). In addition, for both jump landing protocols, a decreased dorsiflexion angular velocity was found after TD (P < .05). During the side jump protocol, a brief period of increased inversion angular velocity was registered after TD (P < .05). Conclusions: Taping is capable of altering ankle joint kinematics prior to TD, placing the ankle joint in a less vulnerable position at TD.


2007 ◽  
Vol 1 (4) ◽  
pp. 246-253
Author(s):  
Brian A. Garner ◽  
Jaeho Shim ◽  
Scott Wilson

Muscles actuating the shoulder girdle are important for stabilizing the scapula and coordinating phased kinematics of the shoulder complex. If these muscles become weak or imbalanced, joint instability and injury may result. Reliable measurement of shoulder strength is thus important for prevention, diagnosis, and rehabilitation of shoulder problems. To date, studies quantifying the strength of the shoulder girdle are limited. The purpose of this work was to design and evaluate a custom apparatus and corresponding protocol for measuring maximal, voluntary, isometric strength of the shoulder girdle during various forms of shrugging exercise. A custom apparatus was constructed as a rigid frame with a vertical post supporting a seat, seat back, and horizontal beam. The beam extends laterally on either side beyond and around the shoulders of a seated subject. A pair of arm extension members pivots on the beam about an axis aligned with the shoulder flexion-extension axis. These members can be locked in place at any angle. Between them is mounted a force-sensing grip assembly, which can be adjusted proximally or distally to accommodate varying shoulder girdle positions. Subjects grasp the grip assembly handles with extended elbows and push or pull as forcefully as possible. Nine female and ten male subjects participated in a protocol using the apparatus to measure maximum isometric force generated at three positions each for elevation, depression, protraction, and retraction of the shoulder girdle (3positions×4modes=12tests). A video motion capture system was used to measure shoulder girdle angles. The reliability of the approach was evaluated based on the repeatability of measured shoulder elevation angle, protraction angle, and total force over three days of testing. The apparatus performed well during the tests, providing a stable, rigid, yet adjustable platform for measuring shoulder girdle strength. Repeatability of force measurements was interpreted as very good to excellent, with intraclass correlation coefficient (ICC) (2,1) values ranging from 0.83 to 0.95 for all tests except one (ICC=0.79). Repeatability of angle measurements was interpreted as good to excellent. For tests measuring elevation and depression strength, the ICC of elevation angle ranged from 0.85 to 0.89. For tests measuring protraction and retraction strength, the ICC of protraction angle ranged from 0.68 to 0.88. This type of apparatus could be an effective clinical tool for measuring strength in the shoulder girdle muscles. Use of the video motion capture system is optional.


Sign in / Sign up

Export Citation Format

Share Document