scholarly journals Deductive Verification Method of Real-Time Safety Properties for Embedded Assembly Programs

Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1163 ◽  
Author(s):  
Satoshi Yamane

It is important to verify both the correctness and real-time properties of embedded systems. However, as practical computer programs are represented by infinite state transition systems, specifying and verifying a computer program is difficult. Real-time properties are also important for embedded programs, but verifying the real-time properties of an embedded program is difficult. In this paper, we focus on verifying an embedded assembly program, in order to verify the real-time safety properties. We propose a deductive verification method to verify real-time safety properties, based on discrete time, as follows: (1) First, we construct a timed computational model including the execution time from the assembly program. We can specify an infinite state transition system including the execution time of the timed computational model. (2) Next, we verify whether a timed computational model satisfies RTLTL (Real-Time Linear Temporal Logic) formulas by deductive verification. We can specify real-time properties by RTLTL. By our proposed methods, we are able to achieve verification of the real-time safety properties of an embedded program.


Author(s):  
AVINAS SAHAY ◽  
JEFFREY J. P. TSAI ◽  
A. PRASAD SISTLA

We present an incremental algorithm for model checking the real-time systems against the requirements specified in the real-time extension of modal mu-calculus. Using this algorithm, we avoid the repeated construction and analysis of the whole state-space during the course of evolution of the system from time to time. We use a finite representation of the system, like most other algorithms on real-time systems. We construct and update a graph (called TSG) that is derived from the region graph and the formula. This allows us to halt the construction of this graph when enough nodes have been explored to determine the truth of the formula. TSG is minimal in the sense of partitioning the infinite state space into regions and it expresses a relation on the set of regions of the partition. We use the structure of the formula to derive this partition. When a change is applied to the timed automaton of the system, we find a new partition from the current partition and the TSG with minimum cost.



Author(s):  
Michael M. Wagner ◽  
J. Espino ◽  
F-C. Tsui ◽  
P. Gesteland ◽  
W. Chapman ◽  
...  


2014 ◽  
Author(s):  
Irving Biederman ◽  
Ori Amir
Keyword(s):  


2015 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Rivan Risdaryanto ◽  
Houtman P. Siregar ◽  
Dedy Loebis

The real-time system is now used on many fields, such as telecommunication, military, information system, evenmedical to get information quickly, on time and accurate. Needless to say, a real-time system will always considerthe performance time. In our application, we define the time target/deadline, so that the system should execute thewhole tasks under predefined deadline. However, if the system failed to finish the tasks, it will lead to fatal failure.In other words, if the system cannot be executed on time, it will affect the subsequent tasks. In this paper, wepropose a real-time system for sending data to find effectiveness and efficiency. Sending data process will beconstructed in MATLAB and sending data process has a time target as when data will send.



Author(s):  
Jiyang Yu ◽  
Dan Huang ◽  
Siyang Zhao ◽  
Nan Pei ◽  
Huixia Cheng ◽  
...  


Author(s):  
Vladimir V. NEKRASOV

Developing a microcontroller-based system for controlling the flywheel motor of high-dynamics spacecraft using Russian-made parts and components made it possible to make statement of the problem of searching control function for a preset rotation rate of the flywheel rotor. This paper discusses one of the possible options for mathematical study of the stated problem, namely, application of structural analysis based on graph theory. Within the framework of the stated problem a graph was constructed for generating the new required rate, while in order to consider the stochastic case option the incidence and adjacency matrices were constructed. The stated problem was solved using a power matrix which transforms a set of contiguous matrices of the graph of admissible solution edge sequences, the real-time control function was found. Based on the results of this work, operational trials were run for the developed control function of the flywheel motor rotor rotation rate, a math model was constructed for the real-time control function, and conclusions were drawn about the feasibility of implementing the results of this study. Key words: Control function, graph, incidence matrix, adjacency matrix, power matrix, microcontroller control of the flywheel motor, highly dynamic spacecraft.



2017 ◽  
pp. 99-103
Author(s):  
Van Bao Thang Phan ◽  
Hoang Bach Nguyen ◽  
Van Thanh Nguyen ◽  
Thi Nhu Hoa Tran ◽  
Viet Quynh Tram Ngo

Introduction: Infection with HPV is the main cause of cervical cancer. Determining HPV infection and the types of HPV plays an important role in diagnosis, treatment and prognosis of cervicitis/cervical cancer. Aims: Determining proportion of high-risk HPV types and the occurrence of coinfection with multiple HPV types. Methods: 177 women with cervicitis or abnormal Pap smear result were enrolled in the study. Performing the real-time PCR for detecting HPV and the reverse DOT-BLOT assay for determining type of HPV in cases of positive PCR. Results: 7 types of high-risk HPV was dectected, the majority of these types were HPV type 18 (74.6%) and HPV type 16 (37.6%); the proportion of infection with only one type of HPV was 30.4% and coinfection with multiple HPV types was higher (69.6%), the coinfected cases with 2 and 3 types were dominated (32.2% and 20.3%, respectively) and the coinfected cases with 4 and 5 types were rare. Conclusion: Use of the real-time PCR and reverse DOT-BLOT assay can determine the high-risk HPV types and the occurrence of coinfection with multiple HPV types. Key words: HPV type, Reverse DOT-BLOT, real-time PCR,PCR, cervical cancer



Sign in / Sign up

Export Citation Format

Share Document