scholarly journals A Novel Approach towards the Design and Implementation of Virtual Network Based on Controller in Future IoT Applications

Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 604
Author(s):  
Faisal Mehmood ◽  
Israr Ullah ◽  
Shabir Ahmad ◽  
Do-Hyeun Kim

The Internet of Things refers (IoT) to the billions of physical devices around the globe that are connected to the Internet, collecting and sharing data. The overall Internet of Things market is projected to be worth more than 50.6 billion U.S. dollars in 2020. IoT devices possess low processing capabilities, limited memory, limited storage, and minimal network protocol support. With the help of cloud computing technology, we can overcome the limited resources of IoT devices. A lot of research has been conducted on IoT device virtualization to facilitate remote access and control. The concept of virtualization in IoT is to provide a virtual representation of physical devices in the form of virtual objects. IoT devices are more likely to be accessed and communicate through virtual objects in the near future. In this paper, we present the design and implementation of building a virtual IoT network for a smart home. The virtual network is based on virtual objects and IoT controller. We derived the concept from Software Defined Network (SDN) and separated the control plane and data plane in the virtual IoT network. This enhanced the rapid development of diverse applications on top of the virtualization layer by establishing a dynamic end-to-end connection between IoT devices. This article briefly explains the design and development of the virtual network. Results achieved during experiments and performance analysis show that IoT controller enhances the capabilities of a virtual network by dynamically controlling the traffic congestion, handling mapping requests, and routing mechanisms.

Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 742 ◽  
Author(s):  
Israr Ullah ◽  
Shakeel Ahmad ◽  
Faisal Mehmood ◽  
DoHyeun Kim

Internet of Things (IoT) is considered one of the future disruptive technologies and has attracted lots of research attention in the recent past. IoT devices are tiny sensing or actuating devices attached to daily life objects, capable of sending sensing data and receiving commands. Cloud computing technology provides tremendous computing and storage capacity over the Internet to overcome limited resources of IoT devices. Many studies are conducted on IoT device virtualization in the cloud environment to facilitate remote access and control. In the future, IoT devices will be accessed through its corresponding virtual objects. Just like the network of physical devices, there needs to be a network of virtual objects in the cyber world. In this paper, we present a concept of building a dynamic virtual network in the cloud environment among connected IoT devices. The key idea is to provide a mechanism for building a virtual network among connected IoT devices from different domains through their corresponding virtual objects in the cloud environment. This will facilitate the sharing of resources and the rapid development of diverse applications on top of the virtualization layer by establishing a dynamic end-to-end connection between IoT devices. In this study, we present a detailed design of the proposed system for building a virtual IoT network. We have also implemented three application layers protocols in OMNET++ for simulation of a virtual objects network to conduct performance analysis of the proposed IoT network virtualization.


2014 ◽  
Vol 912-914 ◽  
pp. 1440-1443
Author(s):  
Fei Lao ◽  
Guo Xin Li

Because the extensive management of the tradational agriculture hinders the development of the agriculture,we advise the system based on the inteent of things,which design and implent the crop growing enviornment.This article describes the meaning and the functions of the system in details,which also describes the architecture ,hardware components and software design.The design of the system promotes the rapid development of the precision agriculture.


2017 ◽  
Author(s):  
JOSEPH YIU

The increasing need for security in microcontrollers Security has long been a significant challenge in microcontroller applications(MCUs). Traditionally, many microcontroller systems did not have strong security measures against remote attacks as most of them are not connected to the Internet, and many microcontrollers are deemed to be cheap and simple. With the growth of IoT (Internet of Things), security in low cost microcontrollers moved toward the spotlight and the security requirements of these IoT devices are now just as critical as high-end systems due to:


Network ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 28-49
Author(s):  
Ehsan Ahvar ◽  
Shohreh Ahvar ◽  
Syed Mohsan Raza ◽  
Jose Manuel Sanchez Vilchez ◽  
Gyu Myoung Lee

In recent years, the number of objects connected to the internet have significantly increased. Increasing the number of connected devices to the internet is transforming today’s Internet of Things (IoT) into massive IoT of the future. It is predicted that, in a few years, a high communication and computation capacity will be required to meet the demands of massive IoT devices and applications requiring data sharing and processing. 5G and beyond mobile networks are expected to fulfill a part of these requirements by providing a data rate of up to terabits per second. It will be a key enabler to support massive IoT and emerging mission critical applications with strict delay constraints. On the other hand, the next generation of software-defined networking (SDN) with emerging cloudrelated technologies (e.g., fog and edge computing) can play an important role in supporting and implementing the above-mentioned applications. This paper sets out the potential opportunities and important challenges that must be addressed in considering options for using SDN in hybrid cloud-fog systems to support 5G and beyond-enabled applications.


2021 ◽  
Vol 5 (1) ◽  
pp. 28-39
Author(s):  
Minami Yoda ◽  
Shuji Sakuraba ◽  
Yuichi Sei ◽  
Yasuyuki Tahara ◽  
Akihiko Ohsuga

Internet of Things (IoT) for smart homes enhances convenience; however, it also introduces the risk of the leakage of private data. TOP10 IoT of OWASP 2018 shows that the first vulnerability is ”Weak, easy to predict, or embedded passwords.” This problem poses a risk because a user can not fix, change, or detect a password if it is embedded in firmware because only the developer of the firmware can control an update. In this study, we propose a lightweight method to detect the hardcoded username and password in IoT devices using a static analysis called Socket Search and String Search to protect from first vulnerability from 2018 OWASP TOP 10 for the IoT device. The hardcoded login information can be obtained by comparing the user input with strcmp or strncmp. Previous studies analyzed the symbols of strcmp or strncmp to detect the hardcoded login information. However, those studies required a lot of time because of the usage of complicated algorithms such as symbolic execution. To develop a lightweight algorithm, we focus on a network function, such as the socket symbol in firmware, because the IoT device is compromised when it is invaded by someone via the Internet. We propose two methods to detect the hardcoded login information: string search and socket search. In string search, the algorithm finds a function that uses the strcmp or strncmp symbol. In socket search, the algorithm finds a function that is referenced by the socket symbol. In this experiment, we measured the ability of our proposed method by searching six firmware in the real world that has a backdoor. We ran three methods: string search, socket search, and whole search to compare the two methods. As a result, all methods found login information from five of six firmware and one unexpected password. Our method reduces the analysis time. The whole search generally takes 38 mins to complete, but our methods finish the search in 4-6 min.


2018 ◽  
Author(s):  
Henry Tranter

Security is always at the forefront of developing technologies. One can seldom go a week without hearing of a new data breach or hacking attempt from various groups around the world, often taking advantage of a simple flaw in a system’s architecture. The Internet of Things (IoT) is one of these developing technologies which may be at risk of such attacks. IoT devices are becoming more and more prevalent in everyday life. From keeping track of an individual’s health, to suggesting meals from items available in an individual’s fridge, these technologies are taking a much larger role in the personal lives of their users. With this in mind, how is security being considered in the development of these technologies? Are these devices that monitor individual’s personal lives just additional vectors for potential data theft? Throughout this survey, various approaches to the development of security systems concerning IoT devices in the home will be discussed, compared, and contrasted in the hope of providing an ideal solution to the problems this technology may produce.


Author(s):  
Clinton Fernandes ◽  
Vijay Sivaraman

This article examines the implications of selected aspects of the Telecommunications (Interception and Access) Amendment (Data Retention) Act 2015, which was passed by the Australian Parliament in March 2015. It shows how the new law has strengthened protections for privacy. However, focusing on the investigatory implications, it shows how the law provides a tactical advantage to investigators who pursue whistleblowers and investigative journalists. The article exposes an apparent discrepancy in the way ‘journalist’ is defined across different pieces of legislation. It argues that although legislators’ interest has been overwhelmingly focused on communications data, the explosion of data generated by the so-called Internet-of-Things (IoT) is as important or more. It shows how the sensors in selected IoT devices lead to a loss of user control and will enable non-stop, involuntary and ubiquitous monitoring of individuals. It suggests that the law will need to be amended further once legislators and investigators’ knowledge of the potential of IoT increases. 


2021 ◽  
Vol 2021 (1) ◽  
pp. 209-228
Author(s):  
Yuantian Miao ◽  
Minhui Xue ◽  
Chao Chen ◽  
Lei Pan ◽  
Jun Zhang ◽  
...  

AbstractWith the rapid development of deep learning techniques, the popularity of voice services implemented on various Internet of Things (IoT) devices is ever increasing. In this paper, we examine user-level membership inference in the problem space of voice services, by designing an audio auditor to verify whether a specific user had unwillingly contributed audio used to train an automatic speech recognition (ASR) model under strict black-box access. With user representation of the input audio data and their corresponding translated text, our trained auditor is effective in user-level audit. We also observe that the auditor trained on specific data can be generalized well regardless of the ASR model architecture. We validate the auditor on ASR models trained with LSTM, RNNs, and GRU algorithms on two state-of-the-art pipelines, the hybrid ASR system and the end-to-end ASR system. Finally, we conduct a real-world trial of our auditor on iPhone Siri, achieving an overall accuracy exceeding 80%. We hope the methodology developed in this paper and findings can inform privacy advocates to overhaul IoT privacy.


Sign in / Sign up

Export Citation Format

Share Document