scholarly journals On the Trade-Off between the Main Parameters of Planar Antenna Arrays

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 739
Author(s):  
Daniele Pinchera

The aim of this paper is two-fold. First, the trade-off between directivity, beam-width, side-lobe-level, number of radiating elements, and scanning range of planar antenna arrays is reviewed, and some simple ready-to-use formulas for the preliminary dimensioning of equispaced planar arrays are provided. Furthermore, the synthesis of sparse planar arrays, and the issue of their reduction in directivity, is analyzed. Second, a simple, yet effective, novel approach to overcome the directivity issue is proposed. The presented method is validated by several synthesized layouts; the examples show that it is possible to synthesize sparse arrays, able to challenge with equispaced lattices in terms of directivity, with a significant reduction of the number of radiators.

2021 ◽  
Author(s):  
Ali Durmus ◽  
Rifat KURBAN ◽  
Ercan KARAKOSE

Abstract Today, the design of antenna arrays is very important in providing effective and efficient wireless communication. The purpose of antenna array synthesis is to obtain a radiation pattern with low side lobe level (SLL) at a desired half power beam width (HPBW) in far-field. The amplitude and position values ​​of the array elements can be optimized to obtain a radiation pattern with suppressed SLLs. In this paper swarm-based meta-heuristic algorithms such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Mayfly algorithm (MA) and Jellyfish Search (JS) algorithms are compared to realize optimal design of linear antenna arrays. Extensive experiments are conducted on designing 10, 16, 24 and 32-element linear arrays by determining the amplitude and positions. Experiments are repeated 30 times due to the random nature of swarm-based optimizers and statistical results show that performance of the novel algorithms, MA and JS, are better than well-known methods PSO and ABC.


2014 ◽  
Vol 7 (5) ◽  
pp. 557-563 ◽  
Author(s):  
Nihad I. Dib

In this paper, the design of thinned planar antenna arrays of isotropic radiators with optimum side lobe level reduction is studied. The teaching–learning-based optimization (TLBO) method, a newly proposed global evolutionary optimization method, is used to determine an optimum set of turned-ON elements of thinned planar antenna arrays that provides a radiation pattern with optimum side lobe level reduction. The TLBO represents a new algorithm for optimization problems in antenna arrays design. It is shown that the TLBO provides results that are better than (or the same as) those obtained using other evolutionary algorithms.


2012 ◽  
Vol 4 (6) ◽  
pp. 635-646
Author(s):  
Ahmed Najah Jabbar ◽  
Ali Shaban Hasooni ◽  
Muthana Khallil Ibrahim

In this study, we present the implementation of invasive weed optimization (IWO) in the maximization of main-lobe to side-lobe level for the non-uniform planar antenna array. The antenna arrays investigated in this study are generated using the chaos game algorithm (CGA) and shaped into selected fractal geometries chosen on the basis of their interesting performance. This CGA is picked out in order to overcome the limitations found in the fractal arrays. All the attained results are compared with the results produced by a well-known optimization algorithm that is the particle swarm optimization (PSO). In all the optimized arrays, IWO shows superior optimization results compared with PSO.


Author(s):  
Hua Guo ◽  
Guangrui Jing ◽  
Mian Dong ◽  
Lijian Zhang ◽  
Xiaodan Zhang

AbstractPattern synthesis of non-uniform elliptical antenna arrays is presented in this paper. Only the element positions of the antenna arrays are optimized by the combination of differential evolution (DE) and invasive weed optimization (IWO) to reduce the peak side lobe level (PSLL) of the radiation pattern. In order to avoid the overlap of the array elements, the minimum spacing of the adjacent elements is constrained. Also, the beam width of the radiation pattern can be constrained effectively. Three elliptical antenna arrays that have 8, 12, and 20 elements are investigated. The synthesis results show that the introduced method can present a good side lobe reduction for the radiation pattern. Compared with other optimization methods, the method proposed in this paper can obtain better performance.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Yanfei Li ◽  
Yang Li

A sparse substrate integrated waveguide (SIW) slot antenna array and its application on phase scanning are studied in this paper. The genetic algorithm is used to optimize the best arrangement for 8-element and 7-element sparse arrays over an aperture of 4.5λ0. Antenna arrays with feeding networks, for steering the main beam pointing to 0° and −15°, are demonstrated with the SIW technology. The comparison between the sparse array and the conventional uniformly spaced array with the same aperture are presented, which suggest that the same beam width can be obtained with the gain decreased by 0.5 or 1 dBi and the number of element reduced by 2 or 3, respectively. The sparse antenna array with beam scanning ability presented in this paper shows that, while the beam scanning in the range of ±15°, the gain fluctuation is less than 0.3 dBi and the side lobe level is lower than −10 dB.


Author(s):  
Ali Durmus ◽  
Rifat Kurban

Abstract In this paper, equilibrium optimization algorithm (EOA), which is a novel optimization algorithm, is applied to synthesize symmetrical linear antenna array and non-uniform circular antenna array (CAA). The main purpose of antenna array synthesis is to achieve a radiation pattern with low maximum side lobe level (MSL) and narrow half-power beam width (HPBW) in far-field. The low MSL here is an important parameter to reduce interference from other communication systems operating in the same frequency band. A narrow HPBW is needed to achieve high directionality in antenna radiation patterns. Entering the literature as a novel optimization technique, EOA optimally determined the amplitude and position values of the array elements to obtain a radiation pattern with a low MSL and narrow HPBW. The EOA is inspired by models of the control volume mass balance used to predict equilibrium as well as dynamic states. To demonstrate the flexibility and performance of the proposed algorithm, 10-element, 16-element and 24-element linear arrays and eight-element, 10-element and 12-element CAAs are synthesized. The MSL and HPBW values of radiation pattern obtained with the EOA are very successful compared to the results of other optimization methods in the literature.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Zhangjing Wang ◽  
Xing Fan ◽  
Haijuan Cui ◽  
Shaoqiu Xiao

A novel thinned array with symmetric distribution along the array center is proposed in this paper. The proposed symmetric thinned array is based on the theory of unequally spaced array and the amplitude of each element in the array can be changed by introducing the weighted function. The pattern of the proposed array can be properly adjusted by changing the weighted function and the amplitude of the weighted factor, which obviously releases new degrees of freedom in array design. It has advantages such as low side lobe level (SLL) in the visible region, no grating lobes, and low nearby side lobe level (NSL), which has good potential for wide-angle scanning. Both simulation and experiment have been done; the experiment results show that, by applying this novel symmetric thinned array with pattern reconfigurable quasi-Yagi antenna, the scanning range of the array is −70°~70° inH-plane with SLL almost −10 dB below the maximum of the main beam. The 3 dB beam-width coverage is −86°~86°, which means that the proposed array can realize the entire upper-space beam coverage and restrain the SLL at the same time.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Om Prakash Acharya ◽  
Amalendu Patnaik ◽  
Sachendra N. Sinha

Antenna array pattern nulling is desirable in order to suppress the interfering signals. But in large antenna arrays, there is always a possibility of failure of some elements, which may degrade the radiation pattern with an increase in side lobe level (SLL) and removal of the nulls from desired position. In this paper a correction procedure is introduced based on Particle Swarm Optimization (PSO) which maintains the nulling performance of the failed antenna array. Considering the faulty elements as nonradiating elements, PSO reoptimizes the weights of the remaining radiating elements to reshape the pattern. Simulation results for a Chebyshev array with imposed single, multiple, and broad nulls with failed antenna array are presented.


Sign in / Sign up

Export Citation Format

Share Document