scholarly journals A New Data-Driven Approach for Power IGBT Remaining Useful Life Estimation Based On Feature Reduction Technique and Neural Network

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1571
Author(s):  
Adla Ismail ◽  
Lotfi Saidi ◽  
Mounir Sayadi ◽  
Mohamed Benbouzid

The insulated gate bipolar transistor (IGBT) is a crucial component of power converters (PCVs) and is commonly used in several PCVs topologies. On the other hand, the investigation and the study of the IGBT component show several changes within its behavior and lifetime, while this component is highly influenced by the operating conditions. Indeed, the monitoring of this component is necessary to minimize unexpected downtime of the wind energy system (WES). However, an accurate prediction of IGBTs remaining useful life (RUL) is the key enabler for life-time-optimized operation. Consequently, this work proposes a new prognostic approach for online IGBTs monitoring that adopts the time-domain analysis to extract useful information that is used as an input in the generation of the health indicator. Moreover, this approach is based on combining both of principal component analysis (PCA) technique and the feedforward neural network (FFNN) technique. PCA is used to reduce features extracted from IGBTs and the FFNN is implemented to achieve online regression of the trend parameter obtained from the PCA technique. To investigate and evaluate the performance of our idea we used the NASA Ames Laboratory Prognostics Center of Excellence IGBTs accelerated aging database. Finally, the achieved results clearly show the strength of the new trend parameter for IGBTs RUL prediction. The most notable strong correlation within the proposed approach is in relation to accuracy value, with an acceptable average accuracy rate of 60.4%.

2021 ◽  
Author(s):  
Tianjiao Lin ◽  
Huaqing Wang ◽  
Liuyang Song ◽  
Lingli Cui

Abstract With the increasing complexity of CNC machine tools and other rotating machinery, it becomes more and more important to improve the reliability of such machines. It is necessary to estimate the remaining Useful Life (RUL) of the important parts such as bearings of these devices. However, the operating conditions of such parts are often very complicated, and there is a great difference between different devices. Therefore, it is difficult to use the traditional mechanism analysis method, which is not only very hard, but also generally has low prediction accuracy. In order to solve the above problems, this paper proposes a Feature-transferred Prediction Network (FTPN), which can adapt to various working conditions, combining with the neural network method in the field of artificial intelligence, and effectively realizes RUL prediction. Since the existing neural network methods were originally proposed to solve the problems in other fields, such as semantic recognition, this paper uses the feature transfer method to improve them. Firstly, the source network based on Convolutional Neural Network (CNN) is pre-trained for fault recognition, and the fault feature information extracted after training is stored in the fault feature layer. Second, CNN and Gate Recurrent Unit (GRU) are used to build target networks and fit the relationship between time series and remaining longevity. Finally, a special loss function is designed to transfer the features extracted from the source network to the target network to help the target network learn fault features and better predict the mechanical RUL. In order to verify the effectiveness of the proposed method, experiments are carried out using the public data set of accelerated life of bearings, and high prediction accuracy is obtained, which proves that the proposed method has certain generalization. The comparison with the existing methods on the same data set shows that the proposed method has a broad industrial application prospect.


Author(s):  
Yiming Guo ◽  
Hui Zhang ◽  
Zhijie Xia ◽  
Chang Dong ◽  
Zhisheng Zhang ◽  
...  

The rolling bearing is the crucial component in the rotating machinery. The degradation process monitoring and remaining useful life prediction of the bearing are necessary for the condition-based maintenance. The commonly used deep learning methods use the raw or processed time domain data as the input. However, the feature extracted by these approaches is insufficient and incomprehensive. To tackle this problem, this paper proposed an improved Deep Convolution Neural Network with the dual-channel input from the time and frequency domain in parallel. The proposed methodology consists of two stages: the incipient failure identification and the degradation process fitting. To verify the effectiveness of the method, the IEEE PHM 2012 dataset is adopted to compare the proposed method and other commonly used approaches. The results show that the improved Deep Convolution Neural Network can effectively describe the degradation process for the rolling bearing.


2021 ◽  
Vol 11 (16) ◽  
pp. 7175
Author(s):  
Islem Bejaoui ◽  
Dario Bruneo ◽  
Maria Gabriella Xibilia

Rotating machines such as induction motors are crucial parts of most industrial systems. The prognostic health management of induction motor rotors plays an essential role in increasing electrical machine reliability and safety, especially in critical industrial sectors. This paper presents a new approach for rotating machine fault prognosis under broken rotor bar failure, which involves the modeling of the failure mechanism, the health indicator construction, and the remaining useful life prediction. This approach combines signal processing techniques, inherent metrics, and principal component analysis to monitor the induction motor. Time- and frequency-domains features allowing for tracking the degradation trend of motor critical components that are extracted from torque, stator current, and speed signals. The most meaningful features are selected using inherent metrics, while two health indicators representing the degradation process of the broken rotor bar are constructed by applying the principal component analysis. The estimation of the remaining useful life is then obtained using the degradation model. The performance of the prediction results is evaluated using several criteria of prediction accuracy. A set of synthetic data collected from a degraded Simulink model of the rotor through simulations is used to validate the proposed approach. Experimental results show that using the developed prognostic methodology is a powerful strategy to improve the prognostic of induction motor degradation.


AI ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 48-70
Author(s):  
Wei Ming Tan ◽  
T. Hui Teo

Prognostic techniques attempt to predict the Remaining Useful Life (RUL) of a subsystem or a component. Such techniques often use sensor data which are periodically measured and recorded into a time series data set. Such multivariate data sets form complex and non-linear inter-dependencies through recorded time steps and between sensors. Many current existing algorithms for prognostic purposes starts to explore Deep Neural Network (DNN) and its effectiveness in the field. Although Deep Learning (DL) techniques outperform the traditional prognostic algorithms, the networks are generally complex to deploy or train. This paper proposes a Multi-variable Time Series (MTS) focused approach to prognostics that implements a lightweight Convolutional Neural Network (CNN) with attention mechanism. The convolution filters work to extract the abstract temporal patterns from the multiple time series, while the attention mechanisms review the information across the time axis and select the relevant information. The results suggest that the proposed method not only produces a superior accuracy of RUL estimation but it also trains many folds faster than the reported works. The superiority of deploying the network is also demonstrated on a lightweight hardware platform by not just being much compact, but also more efficient for the resource restricted environment.


Author(s):  
Ning He ◽  
Cheng Qian ◽  
Lile He

Abstract As an important energy storage device, lithium-ion batteries have vast applications in daily production and life. Therefore, the remaining useful life prediction of such batteries is of great significance, which can maintain the efficacy and reliability of the system powered by lithium-ion batteries. For predicting remaining useful life of lithium-ion batteries accurately, an adaptive hybrid battery model and an improved particle filter are developed. Firstly, the adaptive hybrid model is constructed, which is a combination of empirical model and long-short term memory neural network model such that it could characterize battery capacity degradation trend more effectively. In addition, the adaptive adjustment of the parameters for hybrid model is realized via optimization technique. Then, the beetle antennae search based particle filter is applied to update the battery states offline constructed by the proposed adaptive hybrid model, which can improve the estimation accuracy. Finally, remaining useful life short-term prediction is realized online based on long short-term memory neural network rolling prediction combined historical capacity with online measurements and latest offline states and model parameters. The battery data set published by NASA is used to verify the effectiveness of proposed strategy. The experimental results indicate that the proposed adaptive hybrid model can well represent the battery degradation characteristics, and have a higher accuracy compared with other models. The short-term remaining useful life prediction results have good performance with the errors of 1 cycle, 3 cycles, and 1 cycle, above results indicate proposed scheme has a good performance on short-term remaining useful life prediction.


2021 ◽  
Author(s):  
Pradeep Lall ◽  
Tony Thomas ◽  
Ken Blecker

Abstract Prognostics and Remaining Useful Life (RUL) estimations of complex systems are essential to operational safety, increased efficiency, and help to schedule maintenance proactively. Modeling the remaining useful life of a system with many complexities is possible with the rapid development in the field of deep learning as a computational technique for failure prediction. Deep learning can adapt to multivariate parameters complex and nonlinear behavior, which is difficult using traditional time-series models for forecasting and prediction purposes. In this paper, a deep learning approach based on Long Short-Term Memory (LSTM) network is used to predict the remaining useful life of the PCB at different conditions of temperature and vibration. This technique can identify the different underlying patterns in the time series that can predict the RUL. This study involves feature vector identification and RUL estimations for SAC305, SAC105, and Tin Lead solder PCBs under different vibration levels and temperature conditions. The acceleration levels of vibration are fixed at 5g and 10g, while the temperature levels are 55°C and 100°C. The test board is a multilayer FR4 configuration with JEDEC standard dimensions consists of twelve packages arranged in a rectangular pattern. Strain signals are acquired from the backside of the PCB at symmetric locations to identify the failure of all the packages during vibration. The strain signals are resistance values that are acquired simultaneously during the experiment until the failure of most of the packages on the board. The feature vectors are identified from statistical analysis on the strain signals frequency and instantaneous frequency components. The principal component analysis is used as a data reduction technique to identify the different patterns produced from the four strain signals with failures of the packages during vibration. LSTM deep learning method is used to model the RUL of the packages at different individual operating conditions of vibration for all three solder materials involved in this study. A combined model for RUL prediction for a material that can take care of the changes in the operating conditions is also modeled for each material.


Sign in / Sign up

Export Citation Format

Share Document