scholarly journals Design of Dual-Band Dual-Mode Band-Pass Filter Utilizing 0° Feed Structure and Lumped Capacitors for WLAN/WiMAX Applications

Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1697
Author(s):  
Ahmed A. Ibrahim ◽  
Wael A. E. Ali ◽  
Mahmoud A. Abdelghany

Two dual-band second-order highly selective band pass filters operated at 3.5/5.5 GHz and 3.5/6 GHz for wireless local area network /worldwide interoperability for microwave access WLAN/WiMAX applications are introduced in this paper. The designed filters are inspired of utilizing two coupled open-loop resonators loaded with stub, spiral resonators and lumped capacitors. The filters are designed based on calculating the desired coupling matrix and the external quality factor. The first and the second filters are designed at the fundamental mode of 3.5 GHz then the first filter is loaded with two spiral resonators in the microstrip line to produce the desired band stop behaviour, which in turn achieves the second pass-band. However, the second band of the second filter is achieved by loading the stub with the lumped capacitors, which controls the second mode. The centre frequency of the second band is adjusted by varying the lumped capacitors values. The two designed filters have insertion loss less than 0.7 dB in the pass-band region, high selectivity with more than 4 transmission zeros and more than 20 dB attenuation level in the stop band region. The suggested filter has compact size and high selectivity with tunability behavior. The two filters are fabricated and measured to validate the simulated results.

2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Harish Kumar ◽  
MD. Upadhayay

UWB technology- (operating in broad frequency range of 3.1–10.6 GHz) based filter with WLAN notch has shown great achievement for high-speed wireless communications. To satisfy the UWB system requirements, a band pass filter with a broad pass band width, low insertion loss, and high stop-band suppression are needed. UWB filter with wireless local area network (WLAN) notch at 5.6 GHz and 3 dB fractional bandwidth of 109.5% using a microstrip structure is presented. Initially a two-transmission-pole UWB band pass filter in the frequency range 3.1–10.6 GHz is achieved by designing a parallel-coupled microstrip line with defective ground plane structure using GML 1000 substrate with specifications: dielectric constant 3.2 and thickness 0.762 mm at centre frequency 6.85 GHz. In this structure aλ/4 open-circuited stub is introduced to achieve the notch at 5.6 GHz to avoid the interference with WLAN frequency which lies in the desired UWB band. The design structure was simulated on electromagnetic circuit simulation software and fabricated by microwave integrated circuit technique. The measured VNA results show the close agreement with simulated results.


2018 ◽  
Vol 10 (2) ◽  
pp. 227-233
Author(s):  
Gholamreza Karimi ◽  
Fatemeh Javidan ◽  
Amir Hossein Salehi

AbstractIn this paper, an ultra-wideband (UWB) band-pass filter (BPF) with a sharp notch band is presented. The UWB BPF consists of modified elliptical-ring and multi-mode stub-loaded resonator (MM-SLR). By adding the asymmetric tight coupled lines resonator via input/output (I/O) lines, it can be achieved UWB band-pass response. With adding two bends to the middle resonator, a notch band at 6.86 GHz is created, so that it can be controlled using the mathematical formulas (MF). In the meantime, the equivalent circuit of the middle resonator is obtained using L–C analysis. Measured results of fabricated filter have the advantage such as ultra-wide pass band (flandfHof the defined UWB pass band are 3.776 and 10.42 GHz, which satisfy the requirements of FCC-specified UWB limits), compact size, low insertion loss <0.65 dB and the stop band of the proposed filter is from 11.1 to 16.32 GHz with attenuation of −39.8 to −42.14 dB, respectively. The proposed UWB filter is realized using the substrate with dielectric constant of 2.2 and substrate height of 0.787 mm. Experimental verification is provided and good agreement has been found between simulation and measurement results.


Author(s):  
Ş. Taha İmeci ◽  
◽  
Bilal Tütüncü ◽  
Faruk Bešlija ◽  
Lamija Herceg ◽  
...  

This paper includes two new microstrip filter configurations for high frequency and Ultra-Wide Band applications. The first proposed filter is a composition of four parallel open-circuited stubs connected by optimized fractal-structured microstrip line. The filter response is a combination of three passing regions, namely low pass from 0.1 GHz to 3 GHz, band-pass from 4.5 GHz to 9 GHz and high pass from 10.5 GHz to 13 GHz, separated by two rejection regions from 3 GHz to 4.5 GHz and 9 GHz to 10.5 GHz. Deep and sharp rejection regions reaching up to -44.6 dB with 40 % fractional bandwidth (FBW) are observed with a good electrical performance. Furthermore, with a comparative table, the advantages of this proposed BSF in terms of FBW, compactness and insertion loss are compared with recently reported related studies. Secondly a dual-band band pass filter implementing a Stepped-Impedance resonator (SIR) and a modified H-shaped structure is presented. This filter is designed to operate in a low pass region up to 3.58 GHz and a band pass region from 15.38 to 21.65 GHz, with a wide stopband region between 4.46 and 14.07 GHz. The simulated and measured results are in good agreement. Compared to its peers, the compact size and low price allow for a wide application of these filter configurations, while passing frequencies allow operation in the unlicensed frequency spectrum, which is popular for high-speed communication. Keywords: Microstrip Filter, Band Pass, Band Stop, Open Stubs, SIR.


2013 ◽  
Vol 273 ◽  
pp. 371-374
Author(s):  
Bao Ping Li ◽  
Yan Liang Zhang

Due to the frequency response periodicity of distributed transmission line, microstrip band-pass filter usually produces parasitic pass-band and outputs harmonics away from the center frequency of main pass-band. Based on the study of rectangular ring defected ground structure, a 5-order microstrip LPF(low-pass filter) was designed using the single-pole band-stop and slow-wave characteristics of the rectangular ring DGS(Defected Ground Structure) and SISS(Step-Impedance Shunt Stub) structure. Compared with traditional LPF, this LPF presents the advantages of compact size, low insertion loss, broad stop-band and high steep. It also validates the requirements of miniaturization and high performance for filters.


2013 ◽  
Vol 41 ◽  
pp. 81-95 ◽  
Author(s):  
Fang Xu ◽  
Zongjie Wang ◽  
Mi Xiao ◽  
Jizong Duan ◽  
Jiayang Cui ◽  
...  

2014 ◽  
Vol 905 ◽  
pp. 406-410 ◽  
Author(s):  
S.K. Saha ◽  
Rajib Kar ◽  
D. Mandal ◽  
S.P. Ghoshal

This paper presents a novel, control parameter independent evolutionary search technique known as Seeker Optimization Algorithm (SOA) for the design of a eighth order Infinite Impulse Response (IIR) Band Pass (BP) filter. A new fitness function has also been adopted in this paper to improve the stop band attenuation to a great extent. The performance of the SOA based IIR BP filter design has proven to be much superior as compared to those obtained by real coded genetic algorithm (RGA) and standard particle swarm optimization (PSO) in terms of highest sharpness at cut-off, smallest pass band ripple, highest stop band attenuation, smallest stop band ripple and also the fastest convergence speed with assured stability recognized by the pole-zero analysis of the designed optimized IIR filter.


2019 ◽  
Vol 12 (3) ◽  
pp. 193-197
Author(s):  
Dharmendra Kumar Jhariya ◽  
Akhilesh Mohan ◽  
Rahul Kaushik ◽  
Vishal Narain Saxena

AbstractThe design of a circular-shaped differential wideband band pass filter (BPF) is described. The proposed filter is compact and provides good common mode (CM) suppression. It consists of four ports with a circular-shaped differential mode (DM). The analysis of the filter has been carried out by bisecting it into identical two-port networks along the symmetry plane, resulting in a band stop or band pass response under CM or DM excitations, respectively. The length and width of the stubs can be tuned to obtain the desired pass band and stop band of the differential BPF. The proposed design is fabricated and measured. The results obtained using measurements are in close agreement with those obtained using simulations.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 2998
Author(s):  
Xiaozhen Li ◽  
Mengjiang Xing ◽  
Gan Liu ◽  
Xiaodong Yang ◽  
Chuanxiang Dai ◽  
...  

For highly reliable and compact communication of front-end modules, a miniaturized reflectionless band-pass filter, based on the GaAs integrated passive device (IPD) process, is proposed in this work. The stop-band signal absorption rate of the filter can reach more than 90% and greatly reduce the influence of electromagnetic interference for sensitive devices. First, a circuit topology of reflectionless filter is proposed. Then, the miniaturized reflectionless band-pass filter is designed and fabricated based on GaAs IPD process with a compact size of only 0.85 mm × 1.33 mm × 0.09 mm (0.011λ × 0.018λ × 0.001λ). The filter operates at frequency ranging from 3.3 GHz to 4.5 GHz for 5G communication, the insertion loss (S21) is less than 3 dB, the return loss in the passband (S11) is over 15 dB, the stopband return loss (S11) is over 10 dB, and the out-of-band suppression (S21) reached 19 dB. All the measured results are in good agreement with the simulated results. It shows great potential in the process of designing highly reliable and compact monolithic integrated wireless modules and wearable electronics.


2018 ◽  
Vol 10 (3) ◽  
pp. 301-307 ◽  
Author(s):  
Minjae Jung ◽  
Byung-Wook Min

AbstractWe present a new ultra-wideband (UWB) band-pass filter (BPF) configuration with a stepped impedance short-circuited stub (SISS)-loaded triple-mode resonator (TMR) and stepped impedance radial stub (SIRS). The novel SISS-loaded TMR and SIRS improve the roll-off ratio at both ends. Even though this UWB BPF is based on a single resonator, the measured results show excellent in-band performance with a small insertion loss less than 0.6 dB and return loss greater than −16 dB. The proposed UWB BPF has sharp roll-off ratio of 96 and 43 dB/GHz, respectively, at the lower and upper edges of the pass-band, and a wide stop-band from 10.8 to 15.6 GHz with the rejection greater than 20 dB.


Sign in / Sign up

Export Citation Format

Share Document