scholarly journals An Approach for the Application of a Dynamic Multi-Class Classifier for Network Intrusion Detection Systems

Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1759
Author(s):  
Xavier Larriva-Novo ◽  
Carmen Sánchez-Zas ◽  
Víctor A. Villagrá ◽  
Mario Vega-Barbas ◽  
Diego Rivera

Currently, the use of machine learning models for developing intrusion detection systems is a technology trend which improvement has been proven. These intelligent systems are trained with labeled datasets, including different types of attacks and the normal behavior of the network. Most of the studies use a unique machine learning model, identifying anomalies related to possible attacks. In other cases, machine learning algorithms are used to identify certain type of attacks. However, recent studies show that certain models are more accurate identifying certain classes of attacks than others. Thus, this study tries to identify which model fits better with each kind of attack in order to define a set of reasoner modules. In addition, this research work proposes to organize these modules to feed a selection system, that is, a dynamic classifier. Finally, the study shows that when using the proposed dynamic classifier model, the detection range increases, improving the detection by each individual model in terms of accuracy.

Information ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 315
Author(s):  
Nathan Martindale ◽  
Muhammad Ismail ◽  
Douglas A. Talbert

As new cyberattacks are launched against systems and networks on a daily basis, the ability for network intrusion detection systems to operate efficiently in the big data era has become critically important, particularly as more low-power Internet-of-Things (IoT) devices enter the market. This has motivated research in applying machine learning algorithms that can operate on streams of data, trained online or “live” on only a small amount of data kept in memory at a time, as opposed to the more classical approaches that are trained solely offline on all of the data at once. In this context, one important concept from machine learning for improving detection performance is the idea of “ensembles”, where a collection of machine learning algorithms are combined to compensate for their individual limitations and produce an overall superior algorithm. Unfortunately, existing research lacks proper performance comparison between homogeneous and heterogeneous online ensembles. Hence, this paper investigates several homogeneous and heterogeneous ensembles, proposes three novel online heterogeneous ensembles for intrusion detection, and compares their performance accuracy, run-time complexity, and response to concept drifts. Out of the proposed novel online ensembles, the heterogeneous ensemble consisting of an adaptive random forest of Hoeffding Trees combined with a Hoeffding Adaptive Tree performed the best, by dealing with concept drift in the most effective way. While this scheme is less accurate than a larger size adaptive random forest, it offered a marginally better run-time, which is beneficial for online training.


Author(s):  
Manuel Gonçalves da Silva Neto ◽  
Danielo G. Gomes

With the increasing popularization of computer network-based technologies, security has become a daily concern, and intrusion detection systems (IDS) play an essential role in the supervision of computer networks. An employed approach to combat network intrusions is the development of intrusion detection systems via machine learning techniques. The intrusion detection performance of these systems depends highly on the quality of the IDS dataset used in their design and the decision making for the most suitable machine learning algorithm becomes a difficult task. The proposed paper focuses on evaluate and accurate the model of intrusion detection system of different machine learning algorithms on two resampling techniques using the new CICIDS2017 dataset where Decision Trees, MLPs, and Random Forests on Stratified 10-Fold gives high stability in results with Precision, Recall, and F1-Scores of 98% and 99% with low execution times.


2020 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Yaser M. Banadaki

As numerous Internet-of-Things (IoT) devices are deploying on a daily basis, network intrusion detection systems (NIDS) are among the most critical tools to ensure the protection and security of networks against malicious cyberattacks. This paper employs four machine learning algorithms: XGBoost, random forest, decision tree, and gradient boosting, and evaluates their performance in NIDS, considering the accuracy, precision, recall, and F-score. The comparative analysis conducted using the CICIDS2017 dataset reveals that the XGBoost performs better than the other algorithms reaching the predicted accuracy of 99.6% in detecting cyberattacks. XGBoost-based attack detectors also have the largest weighted metrics of F1-score, precision, and recall. The paper also studies the effect of class imbalance and the size of the normal and attack classes. The small numbers of some attacks in training datasets mislead the classifier to bias towards the majority classes resulting in a bottleneck to improving macro recall and macro F1 score. The results assist the network engineers in choosing the most effective machine learning-based NIDS to ensure network security for today’s growing IoT network traffic. 


Author(s):  
Giovanni Apruzzese ◽  
Mauro Andreolini ◽  
Luca Ferretti ◽  
Mirco Marchetti ◽  
Michele Colajanni

The incremental diffusion of machine learning algorithms in supporting cybersecurity is creating novel defensive opportunities but also new types of risks. Multiple researches have shown that machine learning methods are vulnerable to adversarial attacks that create tiny perturbations aimed at decreasing the effectiveness of detecting threats. We observe that existing literature assumes threat models that are inappropriate for realistic cybersecurity scenarios because they consider opponents with complete knowledge about the cyber detector or that can freely interact with the target systems. By focusing on Network Intrusion Detection Systems based on machine learning methods, we identify and model the real capabilities and circumstances that are necessary for an attacker to carry out a feasible and successful adversarial attack. We then apply our model to several adversarial attacks proposed in literature and highlight the limits and merits that can result in actual adversarial attacks. The contributions of this paper can help hardening defensive systems by letting cyber defenders address the most critical and real issues, and can benefit researchers by allowing them to devise novel forms of adversarial attacks based on realistic threat models.


2021 ◽  
Vol 5 (5) ◽  
pp. 201-208
Author(s):  
Adnan Helmi Azizan ◽  
Salama A. Mostafa ◽  
Aida Mustapha ◽  
Cik Feresa Mohd Foozy ◽  
Mohd Helmy Abd Wahab ◽  
...  

Intrusion detection systems (IDS) are used in analyzing huge data and diagnose anomaly traffic such as DDoS attack; thus, an efficient traffic classification method is necessary for the IDS. The IDS models attempt to decrease false alarm and increase true alarm rates in order to improve the performance accuracy of the system. To resolve this concern, three machine learning algorithms have been tested and evaluated in this research which are decision jungle (DJ), random forest (RF) and support vector machine (SVM). The main objective is to propose a ML-based network intrusion detection system (ML-based NIDS) model that compares the performance of the three algorithms based on their accuracy and precision of anomaly traffics. The knowledge discovery in databases (KDD) methodology and intrusion detection evaluation dataset (CIC-IDS2017) are used in the testing which both are considered as a benchmark in the evaluation of IDS. The average accuracy results of the SVM is 98.18%, RF is 96.76% and DJ is 96.50% in which the highest accuracy is achieved by the SVM. The average precision results of the SVM is 98.74, RF is 97.96 and DJ is 97.82 in which the SVM got a higher average precision compared with the other two algorithms. The average recall results of the SVM is 95.63, RF is 97.62 and DJ is 95.77 in which the RF achieves the highest average of recall than SVM and DJ. In overall, the SVM algorithm is found to be the best algorithm that can be used to detect an intrusion in the system.


2021 ◽  
Vol 1 (2) ◽  
pp. 252-273
Author(s):  
Pavlos Papadopoulos ◽  
Oliver Thornewill von Essen ◽  
Nikolaos Pitropakis ◽  
Christos Chrysoulas ◽  
Alexios Mylonas ◽  
...  

As the internet continues to be populated with new devices and emerging technologies, the attack surface grows exponentially. Technology is shifting towards a profit-driven Internet of Things market where security is an afterthought. Traditional defending approaches are no longer sufficient to detect both known and unknown attacks to high accuracy. Machine learning intrusion detection systems have proven their success in identifying unknown attacks with high precision. Nevertheless, machine learning models are also vulnerable to attacks. Adversarial examples can be used to evaluate the robustness of a designed model before it is deployed. Further, using adversarial examples is critical to creating a robust model designed for an adversarial environment. Our work evaluates both traditional machine learning and deep learning models’ robustness using the Bot-IoT dataset. Our methodology included two main approaches. First, label poisoning, used to cause incorrect classification by the model. Second, the fast gradient sign method, used to evade detection measures. The experiments demonstrated that an attacker could manipulate or circumvent detection with significant probability.


Sign in / Sign up

Export Citation Format

Share Document