scholarly journals Study on the Certification Policy of Zero-Energy Buildings in Korea

2020 ◽  
Vol 12 (12) ◽  
pp. 5172 ◽  
Author(s):  
Yeweon Kim ◽  
Ki-Hyung Yu

This study presents a methodology and process to establish a mandatory policy of zero-energy buildings (ZEBs) in Korea. To determine the mandatory level to acquire the rating of a ZEB in Korea, this study was conducted under the assumption that the criteria of ZEB was a top 5% building considering the building’s energy-efficiency rating, which was certified through a quantitative building energy analysis. A self-sufficiency rate was also proposed to strengthen the passive standard of the buildings as well as to encourage new and renewable energy production. Accordingly, zero-energy buildings (ZEBs) in Korea are defined as having 60 kWh/(m2·yr) of non-renewable primary energy (NRPE) consumption in residential buildings and 80 kWh/(m2·yr) in non-residential buildings, and the self-reliance rate should be more than 20% of the renewable energy consumption as compared to the total energy consumption of the buildings. In addition, the mandatory installation of building energy management systems (BEMS) was promoted to investigate the energy behavior in buildings to be certified as zero-energy in the future. This study also investigated the number of ZEB certificates during the demonstration period from 2017 to 2019 to analyze the energy demand, non-renewable primary energy, renewable primary energy, and self-sufficiency rate as compared to those under the previous standards. For ZEB Grade 1 as compared to the existing building energy-efficiency rating, the sum of the NRPE decreased more than 50%, and renewable energy consumption increased more than four times.

Buildings ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 143 ◽  
Author(s):  
Juan Garcia ◽  
Lukas Kranzl

Since buildings account for 40% of total energy consumption and 36% of CO2 emissions in the European Union (EU), the directive 2010/31/EU “Energy Performance of Buildings Directive (EPDB)” among other legal provisions concerning the reduction of energy consumption of buildings has been enforced. According to this legislation, all new buildings must be nearly zero energy buildings “nZEB” by 31 December 2020 (public buildings by 31 December 2018). Nonetheless, the assessment of the “high energy performance” of a building is ambiguous and a cross country comparison seems to be intricate since different national building codes and nZEB definitions employ different energy indicators and methods. This paper delves into the question of how do the ambition levels of “nZEB” definitions and the transposition of the Directive 2010/31/EU into national law differ in four selected EU Countries: Austria, Germany, Spain, and England (as part of UK). The energy performance of some exemplary buildings is assessed by means of a simplified MATLAB model that is based on the norm DIN V-18599. The results drawn from this work show how diverse are building codes scopes and national “nZEB” definitions. Only 9 of the 36 studied cases of residential buildings obtain consistently the “nZEB” compliance status in all four selected countries. The results show that climate conditions, energy requirements, primary energy factors, ambition levels, and calculation methodologies lead to the problem of an uneven cross-country comparison. Moreover, primary energy consumption [kWh/m2a] set as the main quantitative energy indicator by the directive 2010/31/EU might not be the most suitable one for an EU level comparison.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2538
Author(s):  
Praveen K. Cheekatamarla

Electrical and thermal loads of residential buildings present a unique opportunity for onsite power generation, and concomitant thermal energy generation, storage, and utilization, to decrease primary energy consumption and carbon dioxide intensity. This approach also improves resiliency and ability to address peak load burden effectively. Demand response programs and grid-interactive buildings are also essential to meet the energy needs of the 21st century while addressing climate impact. Given the significance of the scale of building energy consumption, this study investigates how cogeneration systems influence the primary energy consumption and carbon footprint in residential buildings. The impact of onsite power generation capacity, its electrical and thermal efficiency, and its cost, on total primary energy consumption, equivalent carbon dioxide emissions, operating expenditure, and, most importantly, thermal and electrical energy balance, is presented. The conditions at which a cogeneration approach loses its advantage as an energy efficient residential resource are identified as a function of electrical grid’s carbon footprint and primary energy efficiency. Compared to a heat pump heating system with a coefficient of performance (COP) of three, a 0.5 kW cogeneration system with 40% electrical efficiency is shown to lose its environmental benefit if the electrical grid’s carbon dioxide intensity falls below 0.4 kg CO2 per kWh electricity.


2020 ◽  
pp. 40-49 ◽  
Author(s):  
Angelika Anduła ◽  
Dariusz Heim

Photovoltaic systems have become a common solution for, both small residential buildings as well as large service buildings. When buildings are being designed, it is important to focus on the aspect of the object’s energy efficiency as lowering the energy consumption of a given facility is crucial. The article discusses the use of photovoltaic panels such as so-called BAPV (Building Applied Photovoltaics) and BIPV (Building Installed Photovoltaics) installations as well as photovoltaic thermal systems (PV/T), which generate both electricity and heat. The role of PV installation in so-called zero energy buildings and proposals for future research and solutions are also discussed.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6026
Author(s):  
Sergio Gómez Melgar ◽  
Antonio Sánchez Cordero ◽  
Marta Videras Rodríguez ◽  
José Manuel Andújar Márquez

The construction sector is a great contributor to global warming both in new and existing buildings. Minimum energy buildings (MEBs) demand as little energy as possible, with an optimized architectural design, which includes passive solutions. In addition, these buildings consume as low energy as possible introducing efficient facilities. Finally, they produce renewable energy on-site to become zero energy buildings (ZEBs) or even plus zero energy buildings (+ZEB). In this paper, a deep analysis of the energy use and renewable energy production of a social dwelling was carried out based on data measurements. Unfortunately, in residential buildings, most renewable energy production occurs at a different time than energy demand. Furthermore, energy storage batteries for these facilities are expensive and require significant maintenance. The present research proposes a strategy, which involves rescheduling energy demand by changing the habits of the occupants in terms of domestic hot water (DHW) consumption, cooking, and washing. Rescheduling these three electric circuits increases the usability of the renewable energy produced on-site, reducing the misused energy from 52.84% to 25.14%, as well as decreasing electricity costs by 58.46%.


2019 ◽  
Vol 4 (4) ◽  
pp. 109-124
Author(s):  
Hashir Usman

With every passing year, energy consumption in the world is increasing drastically. Most of the energy comes from fossil fuels which are also depleting in a fast manner. Buildings consume a significant amount of energy all over the world and the demand for energy is also increasing unremittingly in buildings. Developed countries are taking profound measures in order to make buildings energy efficient and sustainable by achieving nearly zero energy stage. Pakistan is facing a serious energy crisis from the past few decades. The building sector in Pakistan deserves special attention in this regard since the energy consumption in buildings in Pakistan is feverishly high. Many types of research have been carried out in Pakistan by the United Nations and Energy Department of Pakistan in order to devise applicable methods that not only provide thermal comfort to the occupants but also make a building energy efficient. Renewable energy also plays an important role in compensating building energy demands. It is easy to achieve nearly zero energy state in a good energy efficient building if it is coupled with renewable energy sources then it will make it self-sufficient in energy demand. A survey is also carried out to determine the thermal comfort of the occupants in different types of areas. Also, solar energy analysis is also taken into account to highlight the solar power potential in Pakistan. Several recommendations have also been suggested to implement energy efficiency measures in Pakistan.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seyed Sajad Rezaei Nasab ◽  
Abbasali Tayefi Nasrabadi ◽  
Somayeh Asadi ◽  
Seiyed Ali Haj Seiyed Taghia

PurposeDue to technological improvement and development of the vehicle-to-home (V2H) concept, electric vehicle (EV) can be considered as an active component of net-zero energy buildings (NZEBs). However, to achieve more dependable results, proper energy analysis is needed to take into consideration the stochastic behavior of renewable energy, energy consumption in the building and vehicle use pattern. This study aims to stochastically model a building integrating photovoltaic panels as a microgeneration technology and EVs to meet NZEB requirements.Design/methodology/approachFirst, a multiobjective nondominated sorting genetic algorithm (NSGA-II) was developed to optimize the building energy performance considering panels installed on the façade. Next, a dynamic solution is implemented in MATLAB to stochastically model electricity generation using solar panels as well as building and EV energy consumption. Besides, the Monte Carlo simulation method is used for quantifying the uncertainty of NZEB performance. To investigate the impact of weather on both energy consumption and generation, the model is tested in five different climatic zones in Iran.FindingsThe results show that the stochastic simulation provides building designers with a variety of convenient options to select the best design based on level of confidence and desired budget. Furthermore, economic evaluation signifies that investing in all studied cities is profitable.Originality/valueConsidering the uncertainty in building energy demand and PV power generation as well as EV mobility and the charging–discharging power profile for evaluating building energy performance is the main contribution of this study.


Sign in / Sign up

Export Citation Format

Share Document