scholarly journals Dimensional Analysis of Power Prediction of a Real-Scale Wind Turbine Based on Wind-Tunnel Torque Measurement of Small-Scaled Models

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2374 ◽  
Author(s):  
Sutrisno ◽  
Sigit Iswahyudi ◽  
Setyawan Wibowo

A preliminary study of a horizontal-axis wind turbine (HAWT) design is carried out using a wind tunnel to obtain its aerodynamic characteristics. Utilization of data from the study to develop large-scale wind turbines requires further study. This paper aims to discuss the use of wind turbine data obtained the wind-tunnel measurements to estimate the characteristics of wind turbines that have field size. One should measure the torque of two small-scale turbines inside the wind tunnel. The first small-scale turbine has a radius of 0.14 m, and the radius of the second small turbine is 0.19 m. Torque measurement results from both turbines were analyzed using the Buckingham π theorem to obtain a correlation between torsion and diameter variations. The obtained correlation equation was used to estimate the field measurement of turbine power with a radius of 1.2 m. The resulting correlation equation can be applied to approximate the energy generated by the turbine using the size of the field well in the operating area and the tip-speed ratio (λ) of the turbine design.

Author(s):  
Sutrisno Sutrisno ◽  
Sigit Iswahyudi ◽  
Setyawan Wibowo

A preliminary study of a wind turbine design is carried out using a wind tunnel to obtain its aerodynamic characteristics. Utilization of data from the study to develop large-scale wind turbines requires further study. This paper aims to discuss the use of wind turbine data obtained from the wind tunnel measurements to estimate the characteristics of wind turbines that have field size. The torque of two small-scale turbines was measured inside the wind tunnel. The first small-scale turbine has a radius of 0.14 m and the second small turbine has a radius of 0.19 m. Torque measurement results from both turbines were analyzed using Buckingham π theorem to obtain a correlation between torsion and diameter variations. The obtained correlation equation is used to estimate the field measurement of turbine power with a radius of 1.2 m. The resulting correlation equation can be used to estimate the power generated by the turbine by the size of the field well in the operating area of the tip speed ratio of the turbine design.


Author(s):  
Changduk Kong ◽  
Haseung Lee

Since the energy crisis and the environmental issue have been focused due to excessive fossil fuel consumption, the wind power has been considered as an important renewable energy source. Recently, several MW class large scale wind turbine systems have been developed in some countries. Even though the large scale wind turbine can effectively produce the electrical power, the small scale wind turbines have been continuously developed due some advantages, for instance, it can be easily built by low cost without any limitation of location, i.e. even in city. In case of small scale wind turbines, the vertical axis wind turbine (VAWT) is used in city having frequent wind direction change, even though it has a bit lower efficient than the horizontal axis wind turbine. Furthermore, most small scale wind turbine systems have been designed at the rated wind speed of around 12m/s. This work is to design a high efficiency 500W class composite VAWT blade which is applicable to relatively low speed region. In the aerodynamic design of blade, the parametric studies are carried out to decide an optimal aerodynamic configuration. The aerodynamic efficiency and performance of the designed VAWT is confirmed by the CFD analysis. The structural design is performed by the load case study, the initial sizing using the netting rule and the rule of mixture, the structural analysis using FEM, the fatigue life estimation and the structural test. The prototype blade is manufactured by the hand lay-up and the matched die molding. The experimental structural test results are compared with the FEM analysis results. Finally, to evaluate the prototype VAWT including designed blades, the performance test is performed using a truck to simulate the various range wind speeds and some measuring equipments. According to the performance evaluation result, the estimated performance is well agreed with the experimental test result in all operating ranges.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1988 ◽  
Author(s):  
Abdelgalil Eltayesh ◽  
Magdy Bassily Hanna ◽  
Francesco Castellani ◽  
A.S. Huzayyin ◽  
Hesham M. El-Batsh ◽  
...  

Blockage corrections for the experimental results obtained for a small-scale wind turbine in a wind tunnel are required in order to estimate how the same turbine would perform in real conditions. The tunnel blockage is defined as the ratio of the wind turbine swept area to the wind tunnel cross-section area. Experimental measurements of the power coefficient were performed on a horizontal-axis wind turbine with two rotors of diameter equal to 2 m and different numbers of blades, namely three and five. Measurements were carried out for different tip speed ratios in the closed circuit open test section wind tunnel of the University of Perugia (Italy). The obtained experimental results were compared with the numerical ones carried out in free conditions by using a CFD approach based on the steady-RANS method with the SST k-ω turbulence model, adopting the multiple reference frame (MRF) strategy to reduce the computational effort. The comparison showed that the maximum value of blockage, which is reached in the asymptotic limit at very large tip speed ratio (TSR) values, does not depend appreciably on the number of blades. A higher number of blades, however, makes the occurrence of the maximum blockage come earlier at lower TSRs.


2021 ◽  
pp. 1-16
Author(s):  
Ojing Siram ◽  
Niranjan Sahoo ◽  
Ujjwal K. Saha

Abstract The small-scale horizontal-axis wind turbines (SHAWTs) have emerged as the promising alternative energy resource for the off-grid electrical power generation. These turbines primarily operate at low Reynolds number, low wind speed, and low tip speed ratio conditions. Under such circumstances, the airfoil selection and blade design of a SHAWT becomes a challenging task. The present work puts forward the necessary steps starting from the aerofoil selection to the blade design and analysis by means of blade element momentum theory (BEMT) for the development of four model rotors composed of E216, SG6043, NACA63415, and NACA0012 airfoils. This analysis shows the superior performance of the model rotor with E216 airfoil in comparison to other three models. However, the subsequent wind tunnel study with the E216 model, a marginal drop in its performance due to mechanical losses has been observed.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6167
Author(s):  
Fang Feng ◽  
Guoqiang Tong ◽  
Yunfei Ma ◽  
Yan Li

In order to get rid of the impact of the global financial crisis and actively respond to global climate change, it has become a common choice for global economic development to develop clean energy such as wind energy, improve energy efficiency and reduce greenhouse gas emissions. With the advantages of simple structure, unnecessary facing the wind direction, and unique appearance, the vertical axis wind turbine (VAWT) attracts extensive attention in the field of small and medium wind turbines. The lift-type VAWT exhibits outstanding aerodynamic characteristics at a high tip speed ratio, while the starting characteristics are generally undesirable at a low wind speed; thus, how to improve the starting characteristics of the lift-type VAWT has always been an important issue. In this paper, a lift-drag combined starter (LDCS) suitable for lift-type VAWT was proposed to optimize the starting characteristics of lift-type VAWT. With semi-elliptical drag blades and lift blades equipped on the middle and rear part outside the starter, the structure is characterized by lift-drag combination, weakening the adverse effect of the starter with semi-elliptical drag blades alone on the output performance of the original lift-type VAWT and improving the characteristics of the lift-drag combined VAWT. The static characteristic is one of the important starting characteristics of the wind turbine. The rapid development of computational fluid dynamics has laid a solid material foundation for VAWT. Thus the static characteristics of the LDCS with different numbers of blades were investigated by conducting numerical simulation and wind tunnel tests. The results demonstrated that the static torque coefficient of LDCS increased significantly with the increased incoming wind speed. The average value of the static torque coefficient also increased significantly. This study can provide guidelines for the research of lift-drag combined wind turbines.


Author(s):  
Alessandro Bianchini ◽  
Francesco Balduzzi ◽  
Giovanni Ferrara ◽  
Lorenzo Ferrari ◽  
Giacomo Persico ◽  
...  

Darrieus vertical axis wind turbines (VAWTs) have been recently identified as the most promising solution for new types of applications, such as small-scale installations in complex terrains or offshore large floating platforms. To improve their efficiencies further and make them competitive with those of conventional horizontal axis wind turbines, a more in depth understanding of the physical phenomena that govern the aerodynamics past a rotating Darrieus turbine is needed. Within this context, computational fluid dynamics (CFD) can play a fundamental role, since it represents the only model able to provide a detailed and comprehensive representation of the flow. Due to the complexity of similar simulations, however, the possibility of having reliable and detailed experimental data to be used as validation test cases is pivotal to tune the numerical tools. In this study, a two-dimensional (2D) unsteady Reynolds-averaged Navier–Stokes (U-RANS) computational model was applied to analyze the wake characteristics on the midplane of a small-size H-shaped Darrieus VAWT. The turbine was tested in a large-scale, open-jet wind tunnel, including both performance and wake measurements. Thanks to the availability of such a unique set of experimental data, systematic comparisons between simulations and experiments were carried out for analyzing the structure of the wake and correlating the main macrostructures of the flow to the local aerodynamic features of the airfoils in cycloidal motion. In general, good agreement on the turbine performance estimation was constantly appreciated.


Author(s):  
David M. McStravick ◽  
Brent C. Houchens ◽  
David C. Garland ◽  
Kenneth E. Davis

Due to the increasing demand for alternative energy sources and the reliability of wind turbines, the performance of different horizontal-axis wind turbine blade designs were investigated and compared through computational fluid dynamics (CFD) modeling and wind tunnel testing. The Eppler 423 airfoil was of particular interest. In avionics the blade has been associated with high lift and a low tendency to stall, yet little is known about its performance in wind turbines. In both physical testing and ANSYS CFX 11.0 analysis, the airfoil significantly outperformed a Nordtank 41/500 turbine blade. Wind tunnel tests were performed on 12-inch diameter ABS polymer prototypes, created with a 3D printer. To exaggerate the features of each prototype and obtain more measureable differences in turbine performance, the blades are scaled down more in the radial direction than in the profile section directions. The Eppler 423 airfoil design was tested at different blade base angles. The testing identified an optimum power production for a blade base angle of 25°. In the ANSYS CFX computer simulations, the moments on to the turbine blade due to the incoming air allowed for the power generated and the coefficient of power (Cp) to be determined and compared. The Eppler profile outperformed the Nordtank blade profile in these simulations.


Author(s):  
Nan Yan ◽  
Tyamo Okosun ◽  
Sanjit K. Basak ◽  
Dong Fu ◽  
John Moreland ◽  
...  

Virtual Reality (VR) is a rising technology that creates a computer-generated immersive environment to provide users a realistic experience, through which people who are not analysis experts become able to see numerical simulation results in a context that they can easily understand. VR supports a safe and productive working environment in which users can perceive worlds, which otherwise could be too complex, too dangerous, or impossible or impractical to explore directly, or even not yet in existence. In recent years, VR has been employed to an increasing number of scientific research areas across different disciplines, such as numerical simulation of Computational Fluid Dynamics (CFD) discussed in present study. Wind flow around wind turbines is a complex problem to simulate and understand. Predicting the interaction between wind and turbine blades is complicated by issues such as rotating motion, mechanical resistance from the breaking system, as well as inter-blade and inter-turbine wake effects. The present research uses CFD numerical simulation to predict the motion and wind flow around two types of turbines: 1) a small scale Vertical Axis Wind Turbine (VAWT) and 2) a small scale Horizontal Axis Wind Turbine (HAWT). Results from these simulations have been used to generate virtual reality (VR) visualizations and brought into an immersive environment to attempt to better understand the phenomena involved.


2013 ◽  
Vol 20 (4) ◽  
pp. 383-394
Author(s):  
Changduk Kong ◽  
Haseung Lee

AbstractSince the focus on the energy crisis and environmental issues due to excessive fossil fuel consumption, wind power has been considered as an important renewable energy source. Recently, several megawatt-class large-scale wind turbine systems have been developed in some countries. Even though the large-scale wind turbine can effectively produce electrical power, the small-scale wind turbine has been continuously developed due to some advantages; for instance, it can be easily built at a low cost without any limitation of location, i.e., even in the city. In case of small-scale wind turbines, the vertical axis wind turbine (VAWT) is used in the city despite having a lower efficiency than the horizontal axis wind turbine. Furthermore, most small-scale wind turbine systems have been designed at the rated wind speed of around 12 m/s. This aim of this work is to design a high-efficiency 500W class composite VAWT blade that is applicable to relatively low-speed regions. With regard to the aerodynamic design of the blade, parametric studies are carried out to decide an optimal aerodynamic configuration. The aerodynamic efficiency and performance of the designed VAWT is confirmed by computational fluid dynamics analysis. The structural design is performed by the load case study, initial sizing using the netting rule and the rule of mixture, structural analysis using finite element method (FEM), fatigue life estimation and structural test. The prototype blade is manufactured by hand lay-up and the matched die molding. The experimental structural test results are compared with the FEM analysis results. Finally, to evaluate the prototype VAWT including designed blades, the performance test is performed using a truck to simulate various ranges of wind speeds and some measuring equipment. According to the performance evaluation result, the estimated performance agrees well with the experimental test results in all operating ranges.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 505
Author(s):  
Muhammad Salman Siddiqui ◽  
Muhammad Hamza Khalid ◽  
Abdul Waheed Badar ◽  
Muhammed Saeed ◽  
Taimoor Asim

The reliance on Computational Fluid Dynamics (CFD) simulations has drastically increased over time to evaluate the aerodynamic performance of small-scale wind turbines. With the rapid variability in customer demand, industrial requirements, economic constraints, and time limitations associated with the design and development of small-scale wind turbines, the trade-off between computational resources and the simulation’s numerical accuracy may vary significantly. In the context of wind turbine design and analysis, high fidelity simulation under full geometric and numerical complexity is more accurate but pose significant demands from a computational standpoint. There is a need to understand and quantify performance deterioration of high fidelity simulations under reduced geometric or numerical approximation on a single small scale turbine model. In the present work, the flow past a small-scale Horizontal Axis Wind Turbine (HAWT) was simulated under various geometric and numerical configurations. The geometric complexity was varied based on stationary and rotating turbine conditions. In the stationary case, simple 2D airfoil, 2.5D blade, 3D blade sections are evaluated, while rotational effects are introduced for the configuration 3D blade, rotor only, and the full-scale wind turbine with and without the inclusion of a nacelle and tower. In terms of numerical complexity, the Single Reference Frame (SRF), Multiple Reference Frames (MRF), and the Sliding Meshing Interface (SMI) is analyzed over Tip Speed Ratios (TSR) of 3, 6, 10. The quantification of aerodynamic coefficients of the blade (Cl, Cd) and turbine (Cp, Ct) was conducted along with the discussion on wake patterns in comparison with experimental data.


Sign in / Sign up

Export Citation Format

Share Document