scholarly journals Local Markets for Flexibility Trading: Key Stages and Enablers

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3074 ◽  
Author(s):  
Simone Minniti ◽  
Niyam Haque ◽  
Phuong Nguyen ◽  
Guus Pemen

The European energy transition is leading to a transformed electricity system, where Distributed Energy Resources (DERs) will play a substantial role. Renewable Energy Sources (RES) will challenge the key operational obligation of real-time balancing and the need for flexibility will consequently increase. The introduction of a local flexibility market (LFM) would allow the trading of flexibility supplied by both producing and consuming units at the distribution level, providing market access to DERs, a support tool for Distribution System Operators (DSOs) and a value stream for energy suppliers. Aggregators and DSOs for different reasons can enhance the valuation of flexible DERs. Several research papers have assumed aggregators fully interacting with the electricity markets and DSOs contracting services with power system actors. These interactions are still not allowed in many European countries. This article aims to analyze the European regulation to identify the most important enablers and pave the way towards the full exploitation of DER flexibility, culminating in the establishment of an LFM. Therefore, three main stages, emerging from the progressive withdrawal of the current regulatory and market barriers, are identified: (1) enabling the aggregator’s trading, (2) evolution of the DSO’s role, and (3) key-design challenges of an LFM.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2324
Author(s):  
Aikaterini Forouli ◽  
Emmanouil A. Bakirtzis ◽  
Georgios Papazoglou ◽  
Konstantinos Oureilidis ◽  
Vasileios Gkountis ◽  
...  

Power systems in many countries have recently undergone a significant transition towards renewable and carbon-free generation sources. Those sources pose new challenges to the grid operation due to their intermittency and uncertainty. Consequently, advanced policy strategies and technologies offering new flexibility solutions on the inelastic demand side are required to maintain the reliability of power systems. Given the diversity of situations, legislation and needs across European countries and the varying nature of distribution system operators, this article reviews the deployment of demand side flexibility at national level to identify best practices and main barriers. The analysis concerns European countries of different progress in solutions that leverage flexibility towards offering electricity grid services. The scope is to explore the operation principles of European electricity markets, to assess the participation of emerging flexible resources, and to propose new approaches that facilitate the integration of flexible assets in the distribution grid. The countries reviewed are the United Kingdom, Belgium, Italy and Greece. These countries were selected owing to their diversity in terms of generation mix and market design. Barriers for market access of flexibility resources are also identified in order to form relevant country-specific recommendations.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 781
Author(s):  
Jens Maiwald ◽  
Tino Schuette

The energy transition in Germany takes part in decentral structures. With the ongoing integration of Renewable Energy Sources (RES) into the electricity supply system, supply-side is therefore becoming increasingly decentral and volatile due to the specific generation characteristics. A rather inflexible demand-side, on the other hand, increases the effort to gain the necessary equilibrium between generation and consumption. This paper discusses how consumer behaviour can be influenced by real-time pricing to align demand with generation. Therefore, a combination of two different approaches is used, (I) The Cellular Approach (CA) and (II) Agent Based Modelling (ABM). A model is set up considering a regional energy market, where regional electricity products can be traded peer-to-peer regarding each consumer’s preferences. The observation is made for a whole distribution grid including all types of consumers. The investigations show that energy purchases can be stimulated individually by a flexible pricing mechanism and met preferences. Moreover, benefits occur for the whole region and potentials arise to smooth the exchange balance to the superordinate grid level. Running the model for one entire year in a conservative generation scenario, hours of oversupply could be reduced by 18% and the consumption of green electricity generated regionally could be increased by over 125 MWh within the region itself, in comparison to a base scenario.


Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3612
Author(s):  
Stig Ødegaard Ottesen ◽  
Martin Haug ◽  
Heidi S. Nygård

The decarbonization of the power sector involves electrification and a massive deployment of variable renewable energy sources, leading to an increase of local transmission congestion and ramping challenges. A possible solution to secure grid stability is local flexibility markets, in which prosumers can offer demand-side flexibility to the distribution system operator or other flexibility buyers through an aggregator. The purpose of this study was to develop a framework for estimating and offering short-term demand-side flexibility to a flexibility marketplace, with the main focus being baseline estimation and bid generation. The baseline is estimated based on forecasts that have been corrected for effects from earlier flexibility activations and potential planned use of internal flexibility. Available flexibility volumes are then estimated based on the baseline, physical properties of the flexibility asset and agreed constraints for baseline deviation. The estimated available flexibility is further formatted into a bid that may be offered to a flexibility marketplace, where buyers can buy and activate the offered flexibility, in whole or by parts. To illustrate and verify the proposed methodology, it was applied to a grocery warehouse. Based on real flexibility constraints, historic meter values, and forecasts for this use-case, we simulated a process where the flexibility is offered to a hypothetic flexibility marketplace through an aggregator.


2021 ◽  
Vol 1 ◽  
pp. 128
Author(s):  
Nikolaos Efthymiopoulos ◽  
Prodromos Makris ◽  
Georgios Tsaousoglou ◽  
Konstantinos Steriotis ◽  
Dimitrios J. Vergados ◽  
...  

The FLEXGRID project develops a digital platform designed to offer Digital Energy Services (DESs) that facilitate energy sector stakeholders (i.e. Distribution System Operators - DSOs, Transmission System Operators - TSOs, market operators, Renewable Energy Sources - RES producers, retailers, flexibility aggregators) towards: i) automating and optimizing the planning and operation/management of their systems/assets, and ii) interacting in a dynamic and efficient way with their environment (electricity system) and the rest of the stakeholders. In this way, FLEXGRID envisages secure, sustainable, competitive, and affordable smart grids. A key objective is the incentivization of large-scale bottom-up investments in Distributed Energy Resources (DERs) through innovative smart grid management. Towards this goal, FLEXGRID develops innovative data models and energy market architectures (with high liquidity and efficiency) that effectively manage smart grids through an advanced TSO-DSO interaction as well as interactions between Transmission Network and Distribution Network level energy markets. Consequently, and through intelligence that exploits the innovation of the proposed market architecture, FLEXGRID develops investment tools able to examine in depth the emerging energy ecosystem and allow in this way: i) the financial sustainability of DER investors, and ii) the market liquidity/efficiency through advanced exploitation of DERs and intelligent network upgrades.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1270
Author(s):  
Gabriel Santos ◽  
Tiago Pinto ◽  
Zita Vale

This paper presents the AiD-EM Ontology, which provides a semantic representation of the concepts required to enable the interoperability between multi-agent-based decision support systems, namely AiD-EM, and the market agents that participate in electricity market simulations. Electricity markets’ constant changes, brought about by the increasing necessity for adequate integration of renewable energy sources, make them complex and dynamic environments with very particular characteristics. Several modeling tools directed at the study and decision support in the scope of the restructured wholesale electricity markets have emerged. However, a common limitation is identified: the lack of interoperability between the various systems. This gap makes it impossible to exchange information and knowledge between them, test different market models, enable players from heterogeneous systems to interact in common market environments, and take full advantage of decision support tools. To overcome this gap, this paper presents the AiD-EM Ontology, which includes the necessary concepts related to the AiD-EM multi-agent decision support system, to enable interoperability with easier cooperation and adequate communication between AiD-EM and simulated market agents wishing to take advantage of this decision support tool.


Author(s):  
Martin Bichler ◽  
Hans Ulrich Buhl ◽  
Johannes Knörr ◽  
Felipe Maldonado ◽  
Paul Schott ◽  
...  

AbstractEurope’s clean energy transition is imperative to combat climate change and represents an economic opportunity to become independent of fossil fuels. As such, the energy transition has become one of the most important, but also one of the most challenging economic and societal projects today. Electricity systems of the past were characterized by price-inelastic demand and only a small number of large electricity generators. The transition towards intermittent renewable energy sources changes this very paradigm. Future electricity systems will consist of many thousands of electricity generators and consumers that actively participate in markets, offering flexibility to balance variable electricity supply in markets with a high spatial and temporal resolution. These structural changes have ample consequences for market operators, generators, industrial consumers as well as prosumers. While a large body of the literature is devoted to the energy transition in engineering and the natural sciences, it has received relatively little attention in the recent business research literature, even though many of the central challenges for a successful energy transition are at the core of business research. Therefore, we provide an up-to-date overview of key questions in electricity market design and discuss how changes in electricity markets lead to new research challenges in business research disciplines such as accounting, business & information systems engineering, finance, marketing, operations management, operations research, and risk management.


Increasing renewable energy footprints now features prominently in the clean energy transition plan for many countries. Consumer’s Willingness To Pay (WTP) for renewable energy is an important variable in this plan. A concept-centric review of 70 research articles conducted in this study reveals that first and most commonly, consumer’s willingness to pay for renewable energy indicates the social acceptance of renewable energy, quantifying the extent of public financial support for meeting nationally set renewable energy targets. Second, it reflects the preferred attributes of renewable electricity supply in deregulated retail electricity markets. And third, it mirrors the non use values of renewable energy sources. A concept augmented matrix presented in the paper helps understand the most popular valuation techniques used to quantify WTP estimates in included studies. This paper concludes by presenting policy enablers to accelerate renewable energy transition in developing economies - where the transition is still in nascent stages.


2020 ◽  
pp. 28-37
Author(s):  
Oleksandra V. Kubatko ◽  
Diana O. Yaryomenko ◽  
Mykola O. Kharchenko ◽  
Ismail Y. A. Almashaqbeh

Interruptions in electricity supply may have a series of failures that can affect banking, telecommunications, traffic, and safety sectors. Due to the two-way interactive abilities, Smart Grid allows consumers to automatically redirect on failure, or shut down of the equipment. Smart Grid technologies are the costly ones; however, due to the mitigation of possible problems, they are economically sound. Smart grids can't operate without smart meters, which may easily transmit real-time power consumption data to energy data centers, helping the consumer to make effective decisions about how much energy to use and at what time of day. Smart Grid meters do allow the consumer to track and reduce energy consumption bills during peak hours and increase the corresponding consumption during minimum hours. At a higher level of management (e.g., on the level of separate region or country), the Smart Grid distribution system operators have the opportunity to increase the reliability of power supply primarily by detecting or preventing emergencies. Ukraine's energy system is currently outdated and cannot withstand current loads. High levels of wear of the main and auxiliary equipment of the power system and uneven load distribution in the network often lead to emergencies and power outages. The Smart Grid achievements and energy sustainability are also related to the energy trilemma, which consists of key core dimensions– Energy Security, Energy Equity, and Environmental Sustainability. To be competitive in the world energy market, the country has to organize efficiently the cooperation of public/private actors, governments, economic and social agents, environmental issues, and individual consumer behaviors. Ukraine gained 61 positions out of 128 countries in a list in 2019 on the energy trilemma index. In general, Ukraine has a higher than average energy security position and lower than average energy equity, and environmental sustainability positions. Given the fact that the number of renewable energy sources is measured in hundreds and thousands, network management is complicated and requires a Smart Grid rapid response. Keywords: economic development, Smart Grid, electricity supply, economic and environmental efficiency.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1967
Author(s):  
Gaurav Kumar Roy ◽  
Marco Pau ◽  
Ferdinanda Ponci ◽  
Antonello Monti

Direct Current (DC) grids are considered an attractive option for integrating high shares of renewable energy sources in the electrical distribution grid. Hence, in the future, Alternating Current (AC) and DC systems could be interconnected to form hybrid AC-DC distribution grids. This paper presents a two-step state estimation formulation for the monitoring of hybrid AC-DC grids. In the first step, state estimation is executed independently for the AC and DC areas of the distribution system. The second step refines the estimation results by exchanging boundary quantities at the AC-DC converters. To this purpose, the modulation index and phase angle control of the AC-DC converters are integrated into the second step of the proposed state estimation formulation. This allows providing additional inputs to the state estimation algorithm, which eventually leads to improve the accuracy of the state estimation results. Simulations on a sample AC-DC distribution grid are performed to highlight the benefits resulting from the integration of these converter control parameters for the estimation of both the AC and DC grid quantities.


Sign in / Sign up

Export Citation Format

Share Document