scholarly journals Low Power Consumption Signal Detector Based on Adaptive DFSD in MIMO-OFDM Systems

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 599
Author(s):  
Seong-Joon Shim ◽  
Seung-Jin Choi ◽  
Hyoung-Kyu Song

For a low complexity signal detector to reduce the power consumption for multiple input and multiple output orthogonal frequency division multiplexing (MIMO-OFDM) systems, the depth-first sphere decoding (DFSD) detection scheme was proposed. However, the DFSD detection scheme still has high complexity in the hardware implementation. The complexity is especially high when the signal-to-noise ratio (SNR) is low. Therefore, this paper proposes an adaptive DFSD detection scheme. The proposed detection scheme arrays nodes, sorting by ascending order of squared Euclidean distance (ED) at the top layer of tree structure. Then, the proposed detection scheme uses the different number of nodes according to thresholds based on channel condition. In the simulation results, the proposed detection scheme has similar error performance and low complexity compared with the conventional DFSD detection scheme. Therefore, the proposed detection scheme reduces the power consumption in the signal detector.

Author(s):  
Issam Maaz ◽  
Samer Alabed

In this work, we are interested in implementing, developing, and evaluating a time reversal strategy for a multiple-input single-output orthogonal frequency division multiplexing system. This strategy enjoys a good trade-off between the computational complexity and performance in terms of bit error rate where it offers a good coding gain by forming a beam in the direction of the destination at a price of channel state information available at the transmitter. In time reversal technique, a higher coding and diversity gain can be achieved by increasing the number of transmitting antennas, which focuses the formed beam to the direction of the destination antenna. By achieving this, the received signal-to-noise ratio can be maximized which makes time reversal a good candidate for multiple-input single-output systems while keeping a low complexity. The performance of the proposed system is evaluated in terms of bit error rate where our simulations show that the proposed strategy enjoys the full diversity gain, which is equal to the number of transmitting antennas. Moreover, a robust channel estimation technique is proposed to improve the overall system in terms of bit error rate.


The intervention has to be negated deprived of humiliation of the spectral effectiveness In broadband wireless communication systems. The intrusive overthrow of the parallel OFDM systems are called as MIMO-OFDM (Multiple Input Output Orthogonal Frequency Division Multiplexing) is brought together in our projected effort. The representation of AWGN within the signal channel and improved by the value of MSE minimum factor is chosen. Thus, the optimization is prepared for the operation of the MBA (Modified Bat Algorithm). Our proposed concepts with its results are evaluated in the platform of MATLAB.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoming Chen ◽  
Hua Wang ◽  
Wei Fan ◽  
Yaning Zou ◽  
Andreas Wolfgang ◽  
...  

The effects of oscillator phase noises (PNs) on multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems are studied. It is shown that PNs of common oscillators at the transmitter and at the receiver have the same influence on the performance of (single-stream) beamforming MIMO-OFDM systems, yet different influences on spatial multiplexing MIMO-OFDM systems with singular value decomposition (SVD) based precoding/decoding. When each antenna is equipped with an independent oscillator, the PNs at the transmitter and at the receiver have different influences on beamforming MIMO-OFDM systems as well as spatial multiplexing MIMO-OFDM systems. Specifically, the PN effect on the transmitter (receiver) can be alleviated by having more transmit (receive) antennas for the case of independent oscillators. It is found that the independent oscillator case outperforms the common oscillator case in terms of error vector magnitude (EVM).


2019 ◽  
Vol 8 (2) ◽  
pp. 4347-4353

Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO OFDM) is a key technology for contemporary communication systems due to its spectral efficiency, higher data rates, better diversity gain, good link reliability and both inter symbol interference (ISI) and multipath fading free transmission. However, due to the presence of OFDM, MIMO-OFDM suffers from high peak to average power ratio (PAPR). Even though, several schemes are available to mitigate PAPR, there is no standard solution. Selective Mapping (SLM) significantly reduces the PAPR in OFDM systems at the cost of computational complexity (CC). The CC of SLM can be reduced by proper design of SLM. This paper considers a low complexity SLM (LC SLM) scheme in which both the CC and length of the index of selected phase sequence are significantly reduced. The PAPR of an SLM-OFDM depends on the number of subcarriers in OFDM, the number of candidate blocks in SLM and selected phase sequence and this paper investigate various phase sequences and analyses their PAPR performance. Simulation results show the superior performance of Riemann sequence over the other phase sequences.


2011 ◽  
Vol 5 (9) ◽  
pp. 1303-1307 ◽  
Author(s):  
Y. Liu ◽  
Y. Li ◽  
D. Li ◽  
H. Zhang

Author(s):  
Mahmoud Albreem ◽  
SPK Babu ◽  
M F M Salleh

<p>A low-complexity detection scheme, which consists of a Hybrid Micro Genetic Algorithm (Hybrid- µGA), is proposed for Orthogonal Frequency Division Multiplexing (OFDM) systems. In the absence of orthogonality, intercarrier-interference (ICI) occurs because a signal from one subcarrier causes interference to others. In several environment, the OFDM signal reflections from a far obstacle generate inter-block-interference (IBI) due to long time delays. To avoid these unpleasant effects of IBI and ICI in OFDM system, a Hybrid-µGA detection algorithm is proposed. The proposed detector combines the conventional one-Tap equalizer and the Micro Genetic Algorithm (µGA) search engine. The output of one-Tap equalizer is considered as the input to µGA search engine. Therefore, the µGA starts with some knowledge rather than blindly to speed up the search. Theoretical analysis and simulation results show that the proposed detection Hybrid- µGA scheme substantially improves the performance of OFDM systems. Moreover, its complexity is 10 times lower than the conventional GA.</p>


VLSI Design ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Diego Javier Reinoso Chisaguano ◽  
Minoru Okada

Multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) with an electronically steerable passive array radiator (ESPAR) antenna receiver can improve the bit error rate performance and obtains additional diversity gain without increasing the number of Radio Frequency (RF) front-end circuits. However, due to the large size of the channel matrix, the computational cost required for the detection process using Vertical-Bell Laboratories Layered Space-Time (V-BLAST) detection is too high to be implemented. Using the minimum mean square error sparse-sorted QR decomposition (MMSE sparse-SQRD) algorithm for the detection process the average computational cost can be considerably reduced but is still higher compared with a conventional MIMOOFDM system without ESPAR antenna receiver. In this paper, we propose to use a low complexity submatrix divided MMSE sparse-SQRD algorithm for the detection process of MIMOOFDM with ESPAR antenna receiver. The computational cost analysis and simulation results show that on average the proposed scheme can further reduce the computational cost and achieve a complexity comparable to the conventional MIMO-OFDM detection schemes.


2014 ◽  
Vol E97.D (5) ◽  
pp. 1336-1339 ◽  
Author(s):  
Jang-Kyun AHN ◽  
Hyun-Woo JANG ◽  
Hyoung-Kyu SONG

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


Sign in / Sign up

Export Citation Format

Share Document