scholarly journals A Wide Voltage-Ratio Dual-Output DC Converter for Charging Series-Connected Batteries

Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1650
Author(s):  
Yu Lin Juan

In this study, a dual-output converter with a wide input voltage range is proposed for directly equalized charging of series-connected batteries without additional power conversion losses. Compared with most of the equalized charging topologies, such as the those with a multi-winding transformer or voltage multiplier, the proposed converter could be applied to different voltage conversion ratio applications. The proposed converter is capable not only of step-down but also step-up/down power conversions for different input voltage levels. By operating in discontinuous conduction mode, the diode reverse recovery losses can be eliminated and operation stability can also be enhanced. The operation principles and design criteria are both illustrated. A prototype of charging two series-connected LiFePO4 batteries is constructed. Corresponding experimental results of different input voltage levels are provided to verify the performance and validity.

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3896
Author(s):  
Kuo-Ing Hwu ◽  
Wen-Zhuang Jiang ◽  
Hsiang-Hao Tu

A modified step-down converter is presented herein, which is mainly based on one coupled inductor and several energy-transferring capacitors to improve the voltage conversion ratio as well as to reduce the switch voltage stress. In addition, the portion of the leakage inductance energy can be recycled to the input via the active clamp circuit during the turn-off period and the switches have zero-voltage switching (ZVS) during the turn-on transient. In this paper, the basic operating principles of the proposed converter are firstly described and analyzed, and its effectiveness is finally demonstrated by experiment based on a prototype with input voltage of 60 V, output voltage of 3.3 V and rated output power of 33 W.


2021 ◽  
Author(s):  
Stylianos P. Syrigos ◽  
Georgios C. Christidis ◽  
Theodoros P. Mouselinos ◽  
Emmanuel C. Tatakis

2014 ◽  
Vol 23 (03) ◽  
pp. 1450038 ◽  
Author(s):  
LING-FENG SHI ◽  
HUI-LI GUAN ◽  
QIN-QIN LI ◽  
XIN-QUAN LAI

A novel control method for the critical conduction mode (CRM) power factor correction (PFC) converter is presented, which reduces the size of the boost inductor in the system with wide input-voltage range and improves the efficiency of the system with low input voltage. By introducing the following boost circuit, the output voltage in the application circuit varies with the input root mean square (RMS) voltage to reduce the demand for the large size of the inductor and the efficiency of the system keeps high under the low input voltage. A novel CRM PFC control system with smaller size inductor and higher efficiency is achieved by applied the following boost method to the core control circuits. Experiment results show that the inductance value of the boost inductor is 430 μH using the presented PFC control system and 700 μH using the traditional PFC control system when the input voltage varies from 85 V to 265 V. The novel control method decreases the inductor's value at 38.2%, and the efficiency of the system improves at 1.62% under the input voltage of 85 V.


2013 ◽  
Vol 311 ◽  
pp. 255-260
Author(s):  
Kun Fang ◽  
Yao Sheng Lu ◽  
Fei Yu

Using CSMC 0.5μm process model, a Step-Down DC-DC converter ASIC applied to portable electronic products was designed. The peak current-mode control PWM with slope compensation was adopted in the power management chip to improve the dynamic response speed of the system; the error amplifier and PWM comparator was redesigned to improve the response speed and stability of the chip; the over-current protection function was included in the peak current sampling circuit; in addition, the circuit with the pulse-skipping mode reduce the battery energy loss. Capable of delivering 600mA Output Current over a wide input voltage range from 3.1 to 5.5V, the ASIC, that has a fixed operation frequency of 800kHz and 95% conversion efficiency, is ideally suited for portable electronic products. No external Schottky diode is required in practical application.


Author(s):  
K.O. Khokhlov ◽  
G.K. Khokhlov ◽  
A.V. Ishchenko ◽  
A.N. Cherepanov ◽  
A.S. Naronov

The electric power converter for downhole telemetry systems of oil-well pumps include a downhole block connected to the pump that contains electronic circuits required for the operation of the motor pump sensors and transmission of data about their condition to the surface are described. A few methods of electric power conversion for this purpose are considered. The circuit contained two steps of voltage converting are proposed. The electrical scheme of this method is considered in the article. Proposed decisions are simulated and verified experimentally. The input high supply voltage range (200-4200 V) without loss of efficiency (even temporary) was obtained. The results of simulation and experimental studies have shown very close results.


2019 ◽  
Vol 16 (12) ◽  
pp. 5162-5165
Author(s):  
Cekmas Cekdin ◽  
Zainuddin Nawawi ◽  
Muhammad Faizal

Step down regulator is a device that can reduce the more significant input voltage to a smaller output voltage. The output is stable and well regulated, although the voltage fluctuates in the recommended input voltage range. In the system using IC LM 2596, the input voltage is 40 Volt dc, and the output voltage is 30 Volt dc. The output current of 15 amperes is applied to charge a 100 Ampere hour (Ah) battery on an inverter system installed and integrated with other electronic devices. The step-down IC LM 2596 will be stable at the output current below 15 Ampere. It is especially stable at load currents from 13.2 Ampere to 14.57 Ampere. In order for the current not to shrink, a good cooling system must be designed to dispose of heat on the IC LM 2596. Because the high heat greatly affects the output current on the IC LM 2596.


Sign in / Sign up

Export Citation Format

Share Document