scholarly journals Evaluation of a Scale-Resolving Methodology for the Multidimensional Simulation of GDI Sprays

Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2699 ◽  
Author(s):  
Giovanni Di Ilio ◽  
Vesselin K. Krastev ◽  
Giacomo Falcucci

The introduction of new emissions tests in real driving conditions (Real Driving Emissions—RDE) as well as of improved harmonized laboratory tests (World Harmonised Light Vehicle Test Procedure—WLTP) is going to dramatically cut down NOx and particulate matter emissions for new car models that are intended to be fully Euro 6d compliant from 2020 onwards. Due to the technical challenges related to exhaust gases’ aftertreatment in small-size diesel engines, the current powertrain development trend for light passenger cars is shifted towards the application of different degrees of electrification to highly optimized gasoline direct injection (GDI) engines. As such, the importance of reliable multidimensional computational tools for GDI engine optimization is rapidly increasing. In the present paper, we assess a hybrid scale-resolving turbulence modeling technique for GDI fuel spray simulation, based on the Engine Combustion Network “Spray G” standard test case. Aspects such as the comparison with Reynolds-averaged methods and the sensitivity to the spray model parameters are discussed, and strengths and uncertainties of the analyzed hybrid approach are pointed out. The outcomes of this study serve as a basis for the evaluation of scale-resolving turbulence modeling options for the development of next-generation directly injected thermal engines.

Atmosphere ◽  
2019 ◽  
Vol 10 (3) ◽  
pp. 111 ◽  
Author(s):  
Yaowei Zhao ◽  
Xinghu Li ◽  
Shouxin Hu ◽  
Chenfei Ma

The purpose of this experimental study was to evaluate the range of particulate mass (PM) and particulate number (PN) results from gasoline direct injection (GDI) vehicles by using four test fuels with a range of particulate matter index (PMI) from 1.38 to 2.39 and particulate evaluation index (PEI) from 0.89 to 1.92. The properties of four test fuels were analyzed with detailed hydrocarbon analysis (DHA). Two passenger cars with a GDI engine were tested with four test fuels by conducting the China 6 test procedure, which is equivalent to the worldwide harmonized light-duty vehicle test procedure (WLTP). When the fuels could meet the China 6 primary reference fuel standard with PMI from 1.38 to 2.04 and PEI from 0.89 to 1.59, the PM variation of Vehicle B was from 1.94 mg/km to 3.32 mg/km and of Vehicle A was from 2.55 mg/km to 4.15 mg/km, respectively. In addition, the PN variation of Vehicle B was from 1.57 × 1012 #/km to 3.38 × 1012 #/km and of Vehicle A was from 3.02 × 1012 #/km to 4.80 × 1012 #/km. It was noted that the two different cars had a unique response and sensitivity by using the different fuels, but PMI and PEI did trend with both the PM and the PN response. All PM and PN results from the two cars had an excellent correlation R2 > 0.94 with PMI and R2 > 0.90 with PEI. Therefore, PMI/PEI would be the appropriate specification for sooting tendency in reference fuel standards of emission regulations.


2015 ◽  
Author(s):  
Richard Stradling ◽  
David Rickeard ◽  
Heather Hamje ◽  
John Williams ◽  
Peter Zemroch

Author(s):  
Filippo Giussani ◽  
Andrea Montorfano ◽  
Federico Piscaglia ◽  
A. Onorati ◽  
Jerome Helie

The paper describes the development in the OpenFOAM® technology of a dynamic multiphase Volume-of-Fluid (VoF) solver, supporting mesh handling with topological changes, that has been used for the study of the physics of the primary jet breakup and of the flow disturbance induced by the nozzle geometry during the injector opening event in high-pressure Gasoline Direct Injection (GDI) engines. Turbulence modeling based on a scale-resolving approach has been applied, while phase change of fuel is accounted by means of a cavitation model that has been coupled with the VOF solver. Simulations have been carried out on a 6-hole prototype injector, especially developed for investigations in the framework of the collaborative project FUI MAGIE and provided by Continental Automotive SAS. Special attention has been paid to the domain decomposition strategy and to the code development of the solver, to ensure good load balancing and to minimize inter-processor communication, to achieve good performanceand also high scalability on large computing clusters.DOI: http://dx.doi.org/10.4995/ILASS2017.2017.4989


Author(s):  
Alessandro di Gaeta ◽  
Umberto Montanaro ◽  
Veniero Giglio

Nowadays, the precise control of the air fuel ratio (AFR) in spark ignition (SI) engines plays a crucial role in meeting the more and more restrictive standard emissions for the passenger cars and the fuel economy required by the automotive market as well. To attain this demanding goal, the development of an advanced AFR control strategy embedding highly predictive models becomes mandatory for the next generation of electronic control unit (ECU). Conversely, the adoption of more complex control strategies affects the development time of the ECU increasing the time-to-market of new engine models. In this paper to solve the AFR control problem for gasoline direct injection (GDI) and to speed up the design of the entire control system, a gain scheduling PI model-based control strategy is proposed. To this aim, AFR dynamics are modeled via a first order time delay system whose parameters vary strongly with the fresh air mass entering the cylinders. Nonlinear relations have been found to describe the behavior of model parameters in function of air mass. Closed loop performances, when this novel controller is nested in the control loop, are compared to those provided by the classical PI Ziegler–Nichols control action with respect to different cost functions. Model validation as well as the effectiveness of the control design are carried out by means of ECU-1D engine co-simulation environment for a wide range of engine working conditions. The combination in one integrated designing environment of control systems and virtual engine, simulated through high predictive commercial one dimensional code, becomes a high predictive tool for automotive control engineers and enables fast prototyping.


2021 ◽  
pp. 1-8
Author(s):  
Noah R. Bock ◽  
William F. Northrop

Abstract The influence of fuel properties on particulate matter (PM) emissions from a catalytic gasoline particulate filter (GPF) equipped gasoline direct injection (GDI) engine were investigated using novel “virtual drivetrain” software and an engine mated to an engine dynamometer. The virtual drivetrain software was developed to operate the engine on an engine dynamometer as if it were in a vehicle undergoing a driving cycle. The software uses a physics-based approach to determine vehicle acceleration and speed based on engine load and a programed “shift” schedule to control engine speed. The first 200 seconds of the WLTP driving cycle was tested using 6 different fuel formulations of varying volatility, aromaticity, and ethanol concentration. It was found that there was a strong correlation between aromaticity of the fuel and the engine-out PM emissions, with the highest emitting fuel producing more than double the mass emissions of the low PM production fuel. However, the post-GPF PM emissions depended greatly on the soot loading state of the GPF. The fuel with the highest engine-out PM emissions produced comparable post-GPF emissions to the lowest PM producing fuel over the driving cycle when the GPF was loaded over three cycles with the respective fuels. These results demonstrate the importance of GPF loading state when aftertreatment systems are used for PM reduction. It also shows that GPF control may be more important than fuel properties, and that regulatory compliance for PM can be achieved with proper GPF control calibration irrespective of fuel type.


Alloy Digest ◽  
2015 ◽  
Vol 64 (1) ◽  

Abstract Sandvik Pressurfect is an austenitic chromium-nickel stainless steel with low carbon content used for high-pressure gasoline direct injection (GDI) fuel system. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and bend strength. It also includes information on corrosion resistance as well as heat treating and machining. Filing Code: SS-1195. Producer or source: Sandvik Steel Company.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2099
Author(s):  
Jian Gao ◽  
Anren Yao ◽  
Yeyi Zhang ◽  
Guofan Qu ◽  
Chunde Yao ◽  
...  

The super-knock poses new challenges for further increasing the power density of spark ignition (SI) engines. The critical factors and mechanism connecting regarding the occurrence of super-knock are still unclear. Misfire is a common phenomenon in SI engines that the mixture in cylinder is not ignited normally, which is often caused by spark plug failure. However, the effect of misfire on engine combustion has not been paid enough attention to, particularly regarding connection to super-knock. The paper presents the results of experimental investigation into the relationship between super-knock and misfires at low speed and full load conditions. In this work, a boosted gasoline direct injection (GDI) engine with an exhaust manifold integrated in the cylinder head was employed. Four piezoelectric pressure transducers were used to acquire the data of a pressure trace in cylinder. The spark plugs of four cylinders were controlled manually, of which the ignition system could be cut off as demanded. In particular, a piezoelectric pressure transducer was installed at the exhaust pipe before the turbocharger to capture the pressure traces in the exhaust pipe. The results illustrated that misfires in one cylinder would cause super-knock in the other cylinders as well as the cylinder of itself. After one cylinder misfired, the unburned mixture would burn in the exhaust pipe to produce oscillating waves. The abnormal pressure fluctuation in the exhaust pipe was strongly correlated with the occurrence of super-knock. The sharper the pressure fluctuation, the greater the intensity of knock in the power cylinder. The cylinder whose exhaust valve overlapped with the exhaust valve of the misfired cylinder was prone to super-knock.


Sign in / Sign up

Export Citation Format

Share Document