scholarly journals Localization Approach Based on Ray-Tracing Simulations and Fingerprinting Techniques for Indoor–Outdoor Scenarios

Energies ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2943
Author(s):  
Antonio Del Corte-Valiente ◽  
José Manuel Gómez-Pulido ◽  
Oscar Gutiérrez-Blanco ◽  
José Luis Castillo-Sequera

The increase of the technology related to radio localization and the exponential rise in the data traffic demanded requires a large number of base stations to be installed. This increase in the base stations density also causes a sharp rise in energy consumption of cellular networks. Consequently, energy saving and cost reduction is a significant factor for network operators in the development of future localization networks. In this paper, a localization method based on ray-tracing and fingerprinting techniques is presented. Simulation tools based on high frequencies are used to characterize the channel propagation and to obtain the ray-tracing data. Moreover, the fingerprinting technique requires a costly initial learning phase for cell fingerprint generation (radio-map). To estimate the localization of mobile stations, this paper compares power levels and delay between rays as cost function with different distance metrics. The experimental results show that greater accuracy can be obtained in the location process using the delay between rays as a cost function and the Mahalanobis distance as a metric instead of traditional methods based on power levels and the Euclidean distance. The proposed method appears well suited for localization systems applied to indoor and outdoor scenarios and avoids large and costly measurement campaigns.

Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3584
Author(s):  
Milembolo Miantezila Junior ◽  
Bin Guo ◽  
Chenjie Zhang ◽  
Xuemei Bai

Cellular network operators are predicting an increase in space of more than 200 percent to carry the move and tremendous increase of total users in data traffic. The growing of investments in infrastructure such as a large number of small cells, particularly the technologies such as LTE-Advanced and 6G Technology, can assist in mitigating this challenge moderately. In this paper, we suggest a projection study in spectrum sharing of radar multi-input and multi-output, and mobile LTE multi-input multi-output communication systems near m base stations (BS). The radar multi-input multi-output and mobile LTE communication systems split different interference channels. The new approach based on radar projection signal detection has been proposed for free interference disturbance channel with radar multi-input multi-output and mobile LTE multi-input multi-output by using a new proposed interference cancellation algorithm. We chose the channel of interference with the best free channel, and the detected signal of radar was projected to null space. The goal is to remove all interferences from the radar multi-input multi-output and to cancel any disturbance sources from a chosen mobile Communication Base Station. The experimental results showed that the new approach performs very well and can optimize Spectrum Access.


2021 ◽  
Author(s):  
Carlos Eduardo Dias Vinagre Neto ◽  
Ailton Pinto de Oliveira ◽  
Felipe Henrique Bastos e Bastos ◽  
Emerson Oliveira Junior ◽  
Aldebaro Klautau

Unmanned aerial vehicles (UAVs) are being used in many applications,such as surveillance and product delivery. Currently, manyUAVs are controlled by WiFi or proprietary radio technologies.However, it is envisioned that 5G and beyond 5G (B5G) networkscan connect the UAVs and increase the overall security due to improvedcontrol by operators and governments. Soon, UAVs willalso be used as mobile radio base stations to extend reach or improvethe network capacity. All this motivates intense research on5G technologies for supporting UAV-based applications. However,there are currently few simulation tools for testing and investigatingtelecommunication systems that involve UAV solutions. Forinstance, modern 5G networks use multiple antennas that enablebeamforming. A realistic simulation, in this case, requires not onlysupport for beamforming but also for realistic UAV trajectories,which impact the communication channel evolution over time. Toevaluate scenarios with connected UAVs, this paper presents a toolthat simulates flights in a virtual environment, gathers informationabout the channels among UAVs and the mobile network, andcalculates performance indicators regarding the communicationsystem.


2015 ◽  
Vol 7 (2) ◽  
pp. 113
Author(s):  
Markus Petri ◽  
Marcus Ehrig ◽  
Markus Günther

<p>To deal with the enormous increase of mobile data traffic, new cellular network topologies are necessary. The reduction of cell area and the usage of light-weighted base stations serving only a handful of users, commonly known as the small cell approach, seems to be a suitable solution addressing changes in user expectations and usage scenarios. This paper is an extended version of [1], where current challenges of small cell deployments were presented from a backhaul perspective. A mesh-type backhaul network topology based on beam-steering millimeter-wave systems was proposed as a future-proof solution. In this paper, we focus on a link initialization protocol for beam-steering with highly directive antennas. Special requirements and problems for link setup are analyzed. Based on that, a fast protocol for link initialization is presented and it is evaluated in terms of the resulting initialization speed-up compared to state-of-the-art solutions. Furthermore, a potential approach for extending the fast link initialization protocol to support point-to-multipoint connections is given.</p>


Author(s):  
Battulga Davaasambuu

The rapidly-growing number of mobile subscribers has led to the creation of a large number of signalling messages. This makes it difficult to efficiently handle the mobility of subscribers in mobile cellular networks. The long-term evolution (LTE) architecture provides software-defined networking (SDN) to meet the requirements of 5G networks and to forward massive mobile data traffic. The SDN solution proposes separation of the control and data planes of a network. Centralized mobility management (CMM) is widely used in current mobile network technologies, such as 4G networks. One of the problems related to CMM is a single point of failure. To solve the problems of CMM and in order to provide for efficient mobility management, IETF has developed a solution called distributed mobility management (DMM), in which mobility is handled via the nearest mobility anchor. In this paper, we propose a DMM solution with handover operations for SDN-enabled mobile networks. The advantage of the proposed solution is that intra and inter handover procedures are defined with the data buffering and forwarding processes between base stations and mobility anchors. We adopt a simulation model to evaluate and compare the proposed solution with the existing solution in terms of handover latency, packet loss and handover failures.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3626 ◽  
Author(s):  
Qing Hu ◽  
Linlin Xu ◽  
Xinyu Cheng

In order to remedy the inadequacy of the sources of differential corrections in current automatic identification system (AIS) and to improve the positioning accuracy of AIS mobile stations using single-point positioning, a differential correction approach for AIS mobile stations based on the continuously operating reference station (CORS) network is proposed. In the approach, AIS server derives real-time pseudo-range differential corrections from each reference station in CORS network and generates the corrections for AIS mobile stations. Then AIS base stations transmit these differential corrections to mobile stations using broadcast or addressed binary messages for positioning. Load analysis and testing show that this approach can effectively meet the need for differential corrections for most AIS mobile stations under the condition that the occupancy rate of the AIS channel is less than 1% when using broadcast binary messages. In addition, since this method is based on the existing CORS network, it is straightforward to implement in engineering projects and does not require additional hardware upgrades to the existing differential global positioning system (DGPS) and AIS infrastructure.


Sign in / Sign up

Export Citation Format

Share Document