scholarly journals Magnetic Resonance Imaging of Methane Hydrate Formation and Dissociation in Sandstone with Dual Water Saturation

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3231
Author(s):  
Stian Almenningen ◽  
Per Fotland ◽  
Geir Ersland

This paper reports formation and dissociation patterns of methane hydrate in sandstone. Magnetic resonance imaging spatially resolved hydrate growth patterns and liberation of water during dissociation. A stacked core set-up using Bentheim sandstone with dual water saturation was designed to investigate the effect of initial water saturation on hydrate phase transitions. The growth of methane hydrate (P = 8.3 MPa, T = 1–3 °C) was more prominent in high water saturation regions and resulted in a heterogeneous hydrate saturation controlled by the initial water distribution. The change in transverse relaxation time constant, T2, was spatially mapped during growth and showed different response depending on the initial water saturation. T2 decreased significantly during growth in high water saturation regions and remained unchanged during growth in low water saturation regions. Pressure depletion from one end of the core induced a hydrate dissociation front starting at the depletion side and moving through the core as production continued. The final saturation of water after hydrate dissociation was more uniform than the initial water saturation, demonstrating the significant redistribution of water that will take place during methane gas production from a hydrate reservoir.

2019 ◽  
Vol 89 ◽  
pp. 02008
Author(s):  
Mojtaba Shakerian ◽  
Armin Afrough ◽  
Sarah Vashaee ◽  
Florin Marica ◽  
Yuechao Zhao ◽  
...  

Methane hydrate deposits world-wide are promising sources of natural gas. Magnetic Resonance Imaging (MRI) has proven useful in previous studies of hydrate formation. In the present work, methane hydrate formation in a water saturated sand pack was investigated employing an MRI-compatible metallic core holder at low magnetic field with a suite of advanced MRI methods developed at the UNB MRI Centre. The new MRI methods are intended to permit observation and quantification of residual fluids in the pore space as hydrate forms. Hydrate formation occurred in the water-saturated sand at 1500 psi and 4 °C. The core holder has a maximum working pressure of 4000 psi between -28 and 80 °C. The heat-exchange jacket enclosing the core holder enabled very precise control of the sample temperature. A pure phase encode MRI technique, SPRITE, and a bulk T1-T2 MR method provided high quality measurements of pore fluid saturation. Rapid 1D SPRITE MRI measurements time resolved the disappearance of pore water and hence the growth of hydrate in the sand pack. 3D π-EPI images confirmed that the residual water was inhomogeneously distributed along the sand pack. Bulk T1-T2 measurements discriminated residual water from the pore gas during the hydrate formation. A recently published local T1-T2 method helped discriminate bulk gas from the residual fluids in the sample. Hydrate formation commenced within two hours of gas supply. Hydrate formed throughout the sand pack, but maximum hydrate was observed at the interface between the gas pressure head and the sand pack. This irregular pattern of hydrate formation became more uniform over 24 hours. The rate of hydrate formation was greatest in the first two hours of reaction. An SE-SPI T2 map showed the T2 distribution changed considerably in space and time as hydrate formation continued. Changes in the T2 distribution are interpreted as pore level changes in residual water content and environment.


2014 ◽  
Vol 35 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Friedrich Wetterling ◽  
Lindsay Gallagher ◽  
Jim Mullin ◽  
William M Holmes ◽  
Chris McCabe ◽  
...  

Tissue sodium concentration increases in irreversibly damaged (core) tissue following ischemic stroke and can potentially help to differentiate the core from the adjacent hypoperfused but viable penumbra. To test this, multinuclear hydrogen-1/sodium-23 magnetic resonance imaging (MRI) was used to measure the changing sodium signal and hydrogen-apparent diffusion coefficient (ADC) in the ischemic core and penumbra after rat middle cerebral artery occlusion (MCAO). Penumbra and core were defined from perfusion imaging and histologically defined irreversibly damaged tissue. The sodium signal in the core increased linearly with time, whereas the ADC rapidly decreased by >30% within 20 minutes of stroke onset, with very little change thereafter (0.5–6 hours after MCAO). Previous reports suggest that the time point at which tissue sodium signal starts to rise above normal (onset of elevated tissue sodium, OETS) represents stroke onset time (SOT). However, extrapolating core data back in time resulted in a delay of 72±24 minutes in OETS compared with actual SOT. At the OETS in the core, penumbra sodium signal was significantly decreased (88±6%, P=0.0008), whereas penumbra ADC was not significantly different (92±18%, P=0.2) from contralateral tissue. In conclusion, reduced sodium-MRI signal may serve as a viability marker for penumbra detection and can complement hydrogen ADC and perfusion MRI in the time-independent assessment of tissue fate in acute stroke patients.


2009 ◽  
Vol 8 (5) ◽  
pp. 7290.2009.00023 ◽  
Author(s):  
Sarah C. Jost ◽  
Lynne Collins ◽  
Sarah Travers ◽  
David Piwnica-Worms ◽  
Joel R. Garbow

Small-animal tumor models are essential for developing translational therapeutic strategies in oncology research, with imaging having an increasingly important role. Magnetic resonance imaging (MRI) offers tumor localization, volumetric measurement, and the potential for advanced physiologic imaging but is less well suited to high-throughput studies and has limited capacity to assess early tumor growth. Bioluminescence imaging (BLI) identifies tumors early, monitors tumor growth, and efficiently measures response to therapeutic intervention. Generally, BLI signals have been found to correlate well with magnetic resonance measurements of tumor volume. However, in our studies of small-animal models of malignant brain tumors, we have observed specific instances in which BLI data do not correlate with corresponding MRIs. These observations led us to hypothesize that use of BLI and MRI together, rather than in isolation, would allow more effective and efficient measures of tumor growth in preclinical studies. Herein we describe combining BLI and MRI studies to characterize tumor growth in a mouse model of glioblastoma. The results led us to suggest a cost-effective, multimodality strategy for selecting cohorts of animals with similar tumor growth patterns that improves the accuracy of longitudinal in vivo measurements of tumor growth and treatment response in preclinical therapeutic studies.


2021 ◽  
Vol 11 (2) ◽  
pp. 179
Author(s):  
Gaia Cartocci ◽  
Vittorio Fineschi ◽  
Martina Padovano ◽  
Matteo Scopetti ◽  
Maria Camilla Rossi-Espagnet ◽  
...  

In the context of child abuse spectrum, abusive head trauma (AHT) represents the leading cause of fatal head injuries in children less than 2 years of age. Immature brain is characterized by high water content, partially myelinated neurons, and prominent subarachnoid space, thus being susceptible of devastating damage as consequence of acceleration–deceleration and rotational forces developed by violent shaking mechanism. Diagnosis of AHT is not straightforward and represents a medical, forensic, and social challenge, based on a multidisciplinary approach. Beside a detailed anamnesis, neuroimaging is essential to identify signs suggestive of AHT, often in absence of external detectable lesions. Magnetic resonance imaging (MRI) represents the radiation-free modality of choice to investigate the most typical findings in AHT, such as subdural hematoma, retinal hemorrhage, and hypoxic-ischemic damage and it also allows to detect more subtle signs as parenchymal lacerations, cranio-cervical junction, and spinal injuries. This paper is intended to review the main MRI findings of AHT in the central nervous system of infants, with a specific focus on both hemorrhagic and non-hemorrhagic injuries caused by the pathological mechanisms of shaking. Furthermore, this review provides a brief overview about the most appropriate and feasible MRI protocol to help neuroradiologists identifying AHT in clinical practice.


Sign in / Sign up

Export Citation Format

Share Document