scholarly journals An Online Hybrid Model for Temperature Prediction of Wind Turbine Gearbox Components

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3920
Author(s):  
Qiang Zhao ◽  
Kunkun Bao ◽  
Jia Wang ◽  
Yinghua Han ◽  
Jinkuan Wang

Condition monitoring can improve the reliability of wind turbines, which can effectively reduce operation and maintenance costs. The temperature prediction model of wind turbine gearbox components is of great significance for monitoring the operation status of the gearbox. However, the complex operating conditions of wind turbines pose grand challenges to predict the temperature of gearbox components. In this study, an online hybrid model based on a long short term memory (LSTM) neural network and adaptive error correction (LSTM-AEC) using simple-variable data is proposed. In the proposed model, a more suitable deep learning approach for time series, LSTM algorithm, is applied to realize the preliminary prediction of temperature, which has a stronger ability to capture the non-stationary and non-linear characteristics of gearbox components temperature series. In order to enhance the performance of the LSTM prediction model, the adaptive error correction model based on the variational mode decomposition (VMD) algorithm is developed, where the VMD algorithm can effectively solve the prediction difficulty issue caused by the non-stationary, high-frequency and chaotic characteristics of error series. To apply the hybrid model to the online prediction process, a real-time rolling data decomposition process based on VMD algorithm is proposed. With aims to validate the effectiveness of the hybrid model proposed in this paper, several traditional models are introduced for comparative analysis. The experimental results show that the hybrid model has better prediction performance than other comparative models.

Machines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 69 ◽  
Author(s):  
Gino Iannace ◽  
Giuseppe Ciaburro ◽  
Amelia Trematerra

Wind energy is one of the most widely used renewable energy sources in the world and has grown rapidly in recent years. However, the wind towers generate a noise that is perceived as an annoyance by the population living near the wind farms. It is therefore important to new tools that can help wind farm builders and the administrations. In this study, the measurements of the noise emitted by a wind farm and the data recorded by the supervisory control and data acquisition (SCADA) system were used to construct a prediction model. First, acoustic measurements and control system data have been analyzed to characterize the phenomenon. An appropriate number of observations were then extracted, and these data were pre-processed. Subsequently two models of prediction of sound pressure levels were built at the receiver: a model based on multiple linear regression, and a model based on Random Forest algorithm. As predictors wind speeds measured near the wind turbines and the active power of the turbines were selected. Both data were measured by the SCADA system of wind turbines. The model based on the Random Forest algorithm showed high values of the Pearson correlation coefficient (0.981), indicating a high number of correct predictions. This model can be extremely useful, both for the receiver and for the wind farm manager. Through the results of the model it will be possible to establish for which wind speed values the noise produced by wind turbines become dominant. Furthermore, the predictive model can give an overview of the noise produced by the receiver from the system in different operating conditions. Finally, the prediction model does not require the shutdown of the plant, a very expensive procedure due to the consequent loss of production.


Author(s):  
Hamed Badihi ◽  
Javad Soltani Rad ◽  
Youmin Zhang ◽  
Henry Hong

Wind turbines are renewable energy conversion devices that are being deployed in greater numbers. However, today’s wind turbines are still expensive to operate, and maintain. The reduction of operational and maintenance costs has become a key driver for applying low-cost, condition monitoring and diagnosis systems in wind turbines. Accurate and timely detection, isolation and diagnosis of faults in a wind turbine allow satisfactory accommodation of the faults and, in turn, enhancement of the reliability, availability and productivity of wind turbines. The so–called model-based Fault Detection and Diagnosis (FDD) approaches utilize system model to carry out FDD in real-time. However, wind turbine systems are driven by wind as a stochastic aerodynamic input, and essentially exhibit highly nonlinear dynamics. Accurate modeling of such systems to be suitable for use in FDD applications is a rather difficult task. Therefore, this paper presents a data-driven modeling approach based on artificial intelligence (AI) methods which have excellent capability in describing complex and uncertain systems. In particular, two data-driven dynamic models of wind turbine are developed based on Fuzzy Modeling and Identification (FMI) and Artificial Neural Network (ANN) methods. The developed models represent the normal operating performance of the wind turbine over a full range of operating conditions. Consequently, a model-based FDD scheme is developed and implemented based on each of the individual models. Finally, the FDD performance is evaluated and compared through a series of simulations on a well-known large offshore wind turbine benchmark in the presence of wind turbulences, measurement noises, and different realistic fault scenarios in the generator/converter torque actuator.


2021 ◽  
Vol 1966 (1) ◽  
pp. 012013
Author(s):  
Jingxiao Shu ◽  
Dongyue Zhao ◽  
Xuda Zheng ◽  
Yiwen Li ◽  
Yufeng Zhang

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 982 ◽  
Author(s):  
Xin Wu ◽  
Hong Wang ◽  
Guoqian Jiang ◽  
Ping Xie ◽  
Xiaoli Li

Health monitoring of wind turbine gearboxes has gained considerable attention as wind turbines become larger in size and move to more inaccessible locations. To improve the reliability, extend the lifetime of the turbines, and reduce the operation and maintenance cost caused by the gearbox faults, data-driven condition motoring techniques have been widely investigated, where various sensor monitoring data (such as power, temperature, and pressure, etc.) have been modeled and analyzed. However, wind turbines often work in complex and dynamic operating conditions, such as variable speeds and loads, thus the traditional static monitoring method relying on a certain fixed threshold will lead to unsatisfactory monitoring performance, typically high false alarms and missed detections. To address this issue, this paper proposes a reliable monitoring model for wind turbine gearboxes based on echo state network (ESN) modeling and the dynamic threshold scheme, with a focus on supervisory control and data acquisition (SCADA) vibration data. The aim of the proposed approach is to build the turbine normal behavior model only using normal SCADA vibration data, and then to analyze the unseen SCADA vibration data to detect potential faults based on the model residual evaluation and the dynamic threshold setting. To better capture temporal information inherent in monitored sensor data, the echo state network (ESN) is used to model the complex vibration data due to its simple and fast training ability and powerful learning capability. Additionally, a dynamic threshold monitoring scheme with a sliding window technique is designed to determine dynamic control limits to address the issue of the low detection accuracy and poor adaptability caused by the traditional static monitoring methods. The effectiveness of the proposed monitoring method is verified using the collected SCADA vibration data from a wind farm located at Inner Mongolia in China. The results demonstrated that the proposed method can achieve improved detection accuracy and reliability compared with the traditional static threshold monitoring method.


2021 ◽  
Author(s):  
Edwin Kipchirchir ◽  
Manh Hung Do ◽  
Jackson Githu Njiri ◽  
Dirk Söffker

Abstract. Variability of wind profiles in both space and time is responsible for fatigue loading in wind turbine components. Advanced control methods for mitigating structural loading in these components have been proposed in previous works. These also incorporate other objectives like speed and power regulation for above-rated wind speed operation. In recent years, lifetime control and extension strategies have been proposed to guaranty power supply and operational reliability of wind turbines. These control strategies typically rely on a fatigue load evaluation criteria to determine the consumed lifetime of these components, subsequently varying the control set-point to guaranty a desired lifetime of the components. Most of these methods focus on controlling the lifetime of specific structural components of a wind turbine, typically the rotor blade or tower. Additionally, controllers are often designed to be valid about specific operating points, hence exhibit deteriorating performance in varying operating conditions. Therefore, they are not able to guaranty a desired lifetime in varying wind conditions. In this paper an adaptive lifetime control strategy is proposed for controlled ageing of rotor blades to guaranty a desired lifetime, while considering damage accumulation level in the tower. The method relies on an online structural health monitoring system to vary the lifetime controller gains based on a State of Health (SoH) measure by considering the desired lifetime at every time-step. For demonstration, a 1.5 MW National Renewable Energy Laboratory (NREL) reference wind turbine is used. The proposed adaptive lifetime controller regulates structural loading in the rotor blades to guaranty a predefined damage level at the desired lifetime without sacrificing on the speed regulation performance of the wind turbine. Additionally, significant reduction in the tower fatigue damage is observed.


Author(s):  
Ibtissem Barkat ◽  
Abdelouahab Benretem ◽  
Fawaz Massouh ◽  
Issam Meghlaoui ◽  
Ahlem Chebel

This article aims to study the forces applied to the rotors of horizontal axis wind turbines. The aerodynamics of a turbine are controlled by the flow around the rotor, or estimate of air charges on the rotor blades under various operating conditions and their relation to the structural dynamics of the rotor are critical for design. One of the major challenges in wind turbine aerodynamics is to predict the forces on the blade as various methods, including blade element moment theory (BEM), the approach that is naturally adapted to the simulation of the aerodynamics of wind turbines and the dynamic and models (CFD) that describes with fidelity the flow around the rotor. In our article we proposed a modeling method and a simulation of the forces applied to the horizontal axis wind rotors turbines using the application of the blade elements method to model the rotor and the vortex method of free wake modeling in order to develop a rotor model, which can be used to study wind farms. This model is intended to speed up the calculation, guaranteeing a good representation of the aerodynamic loads exerted by the wind.


Sign in / Sign up

Export Citation Format

Share Document