scholarly journals Wind Turbine Noise Prediction Using Random Forest Regression

Machines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 69 ◽  
Author(s):  
Gino Iannace ◽  
Giuseppe Ciaburro ◽  
Amelia Trematerra

Wind energy is one of the most widely used renewable energy sources in the world and has grown rapidly in recent years. However, the wind towers generate a noise that is perceived as an annoyance by the population living near the wind farms. It is therefore important to new tools that can help wind farm builders and the administrations. In this study, the measurements of the noise emitted by a wind farm and the data recorded by the supervisory control and data acquisition (SCADA) system were used to construct a prediction model. First, acoustic measurements and control system data have been analyzed to characterize the phenomenon. An appropriate number of observations were then extracted, and these data were pre-processed. Subsequently two models of prediction of sound pressure levels were built at the receiver: a model based on multiple linear regression, and a model based on Random Forest algorithm. As predictors wind speeds measured near the wind turbines and the active power of the turbines were selected. Both data were measured by the SCADA system of wind turbines. The model based on the Random Forest algorithm showed high values of the Pearson correlation coefficient (0.981), indicating a high number of correct predictions. This model can be extremely useful, both for the receiver and for the wind farm manager. Through the results of the model it will be possible to establish for which wind speed values the noise produced by wind turbines become dominant. Furthermore, the predictive model can give an overview of the noise produced by the receiver from the system in different operating conditions. Finally, the prediction model does not require the shutdown of the plant, a very expensive procedure due to the consequent loss of production.

2014 ◽  
Vol 20 (5) ◽  
Author(s):  
P. Dohnalek ◽  
M. Dvorsky ◽  
P. Gajdos ◽  
L. Michalek ◽  
R. Sebesta ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3920
Author(s):  
Qiang Zhao ◽  
Kunkun Bao ◽  
Jia Wang ◽  
Yinghua Han ◽  
Jinkuan Wang

Condition monitoring can improve the reliability of wind turbines, which can effectively reduce operation and maintenance costs. The temperature prediction model of wind turbine gearbox components is of great significance for monitoring the operation status of the gearbox. However, the complex operating conditions of wind turbines pose grand challenges to predict the temperature of gearbox components. In this study, an online hybrid model based on a long short term memory (LSTM) neural network and adaptive error correction (LSTM-AEC) using simple-variable data is proposed. In the proposed model, a more suitable deep learning approach for time series, LSTM algorithm, is applied to realize the preliminary prediction of temperature, which has a stronger ability to capture the non-stationary and non-linear characteristics of gearbox components temperature series. In order to enhance the performance of the LSTM prediction model, the adaptive error correction model based on the variational mode decomposition (VMD) algorithm is developed, where the VMD algorithm can effectively solve the prediction difficulty issue caused by the non-stationary, high-frequency and chaotic characteristics of error series. To apply the hybrid model to the online prediction process, a real-time rolling data decomposition process based on VMD algorithm is proposed. With aims to validate the effectiveness of the hybrid model proposed in this paper, several traditional models are introduced for comparative analysis. The experimental results show that the hybrid model has better prediction performance than other comparative models.


2021 ◽  
pp. 0309524X2199245
Author(s):  
Kawtar Lamhour ◽  
Abdeslam Tizliouine

The wind industry is trying to find tools to accurately predict and know the reliability and availability of newly installed wind turbines. Failure modes, effects and criticality analysis (FMECA) is a technique used to determine critical subsystems, causes and consequences of wind turbines. FMECA has been widely used by manufacturers of wind turbine assemblies to analyze, evaluate and prioritize potential/known failure modes. However, its actual implementation in wind farms has some limitations. This paper aims to determine the most critical subsystems, causes and consequences of the wind turbines of the Moroccan wind farm of Amougdoul during the years 2010–2019 by applying the maintenance model (FMECA), which is an analysis of failure modes, effects and criticality based on a history of failure modes occurred by the SCADA system and proposing solutions and recommendations.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4626
Author(s):  
Faris Alatar ◽  
Ali Mehrizi-Sani

Integration of wind energy resources into the grid creates several challenges for power system dynamics. More specifically, Type-3 wind turbines are susceptible to subsynchronous control interactions (SSCIs) when they become radially connected to a series-compensated transmission line. SSCIs can cause disruptions in power generation and can result in significant damage to wind farm (WF) components and equipment. This paper proposes an approach to mitigate SSCIs using an online frequency scan, with optimized phase angles of voltage harmonic injection to maintain steady-state operation, to modify the controllers or the operating conditions of the wind turbine. The proposed strategy is simulated in PSCAD/EMTDC software on the IEEE second benchmark model for subsynchronous resonance. Simulation results demonstrate the effectiveness of this strategy by ensuring oscillations do not grow.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4291
Author(s):  
Paxis Marques João Roque ◽  
Shyama Pada Chowdhury ◽  
Zhongjie Huan

District of Namaacha in Maputo Province of Mozambique presents a high wind potential, with an average wind speed of around 7.5 m/s and huge open fields that are favourable to the installation of wind farms. However, in order to make better use of the wind potential, it is necessary to evaluate the operating conditions of the turbines and guide the independent power producers (IPPs) on how to efficiently use wind power. The investigation of the wind farm operating conditions is justified by the fact that the implementation of wind power systems is quite expensive, and therefore, it is imperative to find alternatives to reduce power losses and improve energy production. Taking into account the power needs in Mozambique, this project applied hybrid optimisation of multiple energy resources (HOMER) to size the capacity of the wind farm and the number of turbines that guarantee an adequate supply of power. Moreover, considering the topographic conditions of the site and the operational parameters of the turbines, the system advisor model (SAM) was applied to evaluate the performance of the Vestas V82-1.65 horizontal axis turbines and the system’s power output as a result of the wake effect. For any wind farm, it is evident that wind turbines’ wake effects significantly reduce the performance of wind farms. The paper seeks to design and examine the proper layout for practical placements of wind generators. Firstly, a survey on the Namaacha’s electricity demand was carried out in order to obtain the district’s daily load profile required to size the wind farm’s capacity. Secondly, with the previous knowledge that the operation of wind farms is affected by wake losses, different wake effect models applied by SAM were examined and the Eddy–Viscosity model was selected to perform the analysis. Three distinct layouts result from SAM optimisation, and the best one is recommended for wind turbines installation for maximising wind to energy generation. Although it is understood that the wake effect occurs on any wind farm, it is observed that wake losses can be minimised through the proper design of the wind generators’ placement layout. Therefore, any wind farm project should, from its layout, examine the optimal wind farm arrangement, which will depend on the wind speed, wind direction, turbine hub height, and other topographical characteristics of the area. In that context, considering the topographic and climate features of Mozambique, the study brings novelty in the way wind farms should be placed in the district and wake losses minimised. The study is based on a real assumption that the project can be implemented in the district, and thus, considering the wind farm’s capacity, the district’s energy needs could be met. The optimal transversal and longitudinal distances between turbines recommended are 8Do and 10Do, respectively, arranged according to layout 1, with wake losses of about 1.7%, land utilisation of about 6.46 Km2, and power output estimated at 71.844 GWh per year.


2014 ◽  
Vol 962-965 ◽  
pp. 564-569 ◽  
Author(s):  
Yan Chao Shao ◽  
Liang Jun Xu ◽  
Yan Zhu Hu ◽  
Xin Bo Ai

Pressure monitoring is an important means to reflect the running status of the natural gas desulphurization process. By using the data mining technology, the interaction relationships between the pressure and other monitoring parameters are analyzed in this paper. A pressure trend prediction model is established to show the pressure status in the natural gas desulfurization process. Firstly, the theory of Principal Component Analysis (PCA) is used to reduce the dimensions of measured data from traditional Supervisory Control and Data Acquisition (SCADA) system. Secondly the principal components are taken as input data into the pressure trend prediction model based on multiple regression theory of Support Vector Regression (SVR). Finally the accuracy and the generalization ability of the model are tested by the measured data obtained from SCADA system. Compared with other prediction models, pressure trend prediction model based on PCA and SVR gets smaller MSE and higher correlation. The pressure trend prediction model gets better generalization ability and stronger robustness, and is an effective complement to SCADA system in the natural gas desulphurization process.


Sign in / Sign up

Export Citation Format

Share Document