scholarly journals Improving Energy Efficiency Fairness of Wireless Networks: A Deep Learning Approach

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4300 ◽  
Author(s):  
Hoon Lee ◽  
Han Seung Jang ◽  
Bang Chul Jung

Achieving energy efficiency (EE) fairness among heterogeneous mobile devices will become a crucial issue in future wireless networks. This paper investigates a deep learning (DL) approach for improving EE fairness performance in interference channels (IFCs) where multiple transmitters simultaneously convey data to their corresponding receivers. To improve the EE fairness, we aim to maximize the minimum EE among multiple transmitter–receiver pairs by optimizing the transmit power levels. Due to fractional and max-min formulation, the problem is shown to be non-convex, and, thus, it is difficult to identify the optimal power control policy. Although the EE fairness maximization problem has been recently addressed by the successive convex approximation framework, it requires intensive computations for iterative optimizations and suffers from the sub-optimality incurred by the non-convexity. To tackle these issues, we propose a deep neural network (DNN) where the procedure of optimal solution calculation, which is unknown in general, is accurately approximated by well-designed DNNs. The target of the DNN is to yield an efficient power control solution for the EE fairness maximization problem by accepting the channel state information as an input feature. An unsupervised training algorithm is presented where the DNN learns an effective mapping from the channel to the EE maximizing power control strategy by itself. Numerical results demonstrate that the proposed DNN-based power control method performs better than a conventional optimization approach with much-reduced execution time. This work opens a new possibility of using DL as an alternative optimization tool for the EE maximizing design of the next-generation wireless networks.

2018 ◽  
Vol 25 (4) ◽  
pp. 74-81 ◽  
Author(s):  
Bomin Mao ◽  
Fengxiao Tang ◽  
Zubair Md. Fadlullah ◽  
Nei Kato ◽  
Osamu Akashi ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3234
Author(s):  
Jingon Joung ◽  
Han Lim Lee ◽  
Jian Zhao ◽  
Xin Kang

In this paper, a power control method is proposed for a buffer-aided relay node (RN) to enhance the energy efficiency of the RN system. By virtue of a buffer, the RN can reserve the data at the buffer when the the channel gain between an RN and a destination node (DN) is weaker than that between SN and RN. The RN then opportunistically forward the reserved data in the buffer according to channel condition between the RN and the DN. By exploiting the buffer, RN reduces transmit power when it reduces the transmit data rate and reserve the data in the buffer. Therefore, without any total throughput reduction, the power consumption of RN can be reduced, resulting in the energy efficiency (EE) improvement of the RN system. Furthermore, for the power control, we devise a simple power control method based on a two-dimensional surface fitting model of an optimal transmit power of RN. The proposed RN power control method is readily and locally implementable at the RN, and it can significantly improve EE of the RN compared to the fixed power control method and the spectral efficiency based method as verified by the rigorous numerical results.


2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Xuefei Peng ◽  
Jiandong Li ◽  
Yifei Xu

We firstly formulate the energy efficiency (EE) maximization problem of joint user association and power allocation considering minimum data rate requirement of small cell users (SUEs) and maximum transmit power constraint of small cell base stations (SBSs), which is NP-hard. Then, we propose a dynamic coordinated multipoint joint transmission (CoMP-JT) algorithm to improve EE. In the first phase, SUEs are associated with the SBSs close to them to reduce the loss of power by the proposed user association algorithm, where the associated SBSs of each small cell user (SUE) form a dynamic CoMP-JT set. In the second phase, through the methods of fractional programming and successive convex approximation, we transform the EE maximization subproblem of power allocation for SBSs into a convex problem that can be solved by proposed power allocation optimization algorithm. Moreover, we show that the proposed solution has a much lower computational complexity than that of the optimal solution obtained by exhaustive search. Simulation results demonstrate that the proposed solution has a better performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ni ◽  
Xinyu Da ◽  
Hang Hu ◽  
Miao Zhang

In this work, we investigate the secrecy energy efficiency (SEE) optimization problem for a multiple-input single-output (MISO) cognitive radio (CR) network based on a practical nonlinear energy-harvesting (EH) model. In particular, the energy receiver (ER) is assumed to be a potential eavesdropper due to the open architecture of a CR network with simultaneous wireless information and power transfer (SWIPT), such that the confidential message is prone to be intercepted in wireless communications. The aim of this work is to provide a secure transmit beamforming design while satisfying the minimum secrecy rate target, the minimum EH requirement, and the maximum interference leakage power to primary user (PU). In addition, we consider that all the channel state information (CSI) is perfectly known at the secondary transmitter (ST). We formulate this beamforming design as a SEE maximization problem; however, the original optimization problem is not convex due to the nonlinear fractional objective function. To solve it, a novel iterative algorithm is proposed to obtain the globally optimal solution of the primal problem by using the nonlinear fractional programming and sequential programming. Finally, numerical simulation results are presented to validate the performance of the proposed scheme.


Electronics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 582
Author(s):  
Feng Hu ◽  
Kaiyue Wang ◽  
Shufeng Li ◽  
Libiao Jin

This paper proposes a dynamic resource allocation scheme to maximize the energy efficiency (EE) for Massive MIMO Systems. The imperfect channel estimation (CE) and feedback are explicitly considered in the EE maximization problem, which aim to optimize the power allocation, the antenna subset selection for transmission, and the pilot assignment. Assuming CE error to be bounded for the complex-constrained Cramer–Rao Bound (CRB), theoretical results show that the lower bound is directly proportional to its number of unconstrained parameters. Utilizing this perspective, a separated and bi-directional estimation is developed to achieve both low CRB and low complexity by exploiting channel and noise spatial separation. Exploiting global optimization procedure, the optimal resource allocation can be transformed into a standard convex optimization problem. This allows us to derive an efficient iterative algorithm for obtaining the optimal solution. Numerical results are provided to demonstrate that the outperformance of the proposed algorithms are superior to existing schemes.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Muhammad Muzamil Aslam ◽  
Liping Du ◽  
Zahoor Ahmed ◽  
Muhammad Nauman Irshad ◽  
Hassan Azeem

The cognitive radio network (CRN) is aimed at strengthening the system through learning and adjusting by observing and measuring the available resources. Due to spectrum sensing capability in CRN, it should be feasible and fast. The capability to observe and reconfigure is the key feature of CRN, while current machine learning techniques work great when incorporated with system adaption algorithms. This paper describes the consensus performance and power control of spectrum sharing in CRN. (1) CRN users are considered noncooperative users such that the power control policy of a primary user (PU) is predefined keeping the secondary user (SU) unaware of PU’s power control policy. For a more efficient spectrum sharing performance, a deep learning power control strategy has been developed. This algorithm is based on the received signal strength at CRN nodes. (2) An agent-based approach is introduced for the CR user’s consensus performance. (3) All agents reached their steady-state value after nearly 100 seconds. However, the settling time is large. Sensing delay of 0.4 second inside whole operation is identical. The assumed method is enough for the representation of large-scale sensing delay in the CR network.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Liang Xue ◽  
Yao Ma ◽  
Miao Zhang ◽  
Wanqiang Qin ◽  
Jin-Long Wang ◽  
...  

In this paper, the optimal beamforming problem of multi-input single-output (MISO) cognitive radio (CR) downlink networks with simultaneous wireless information and power transfer is studied. Due to the nonconvexity of the objective function, the considered nonconvex optimization problem is firstly transformed to an equivalent subtraction problem and then an approximated convex optimization problem is obtained by using the successive convex approximation (SCA). When the instantaneous channel state information (CSI) of the eavesdropping link is unknown to the legitimate transmitter, another interruption-constrained energy efficiency optimization problem is proposed and the Bernstein-type inequality (BTI) is used to conservatively approximate the probability constraint. The paper proposes a two-level iterative algorithm based on Dinkelbach to find the optimal solution of the EE maximization problem. Numerical results validate the effectiveness and convergence of the proposed algorithm.


Sign in / Sign up

Export Citation Format

Share Document