scholarly journals Assessment and Day-Ahead Forecasting of Hourly Solar Radiation in Medellín, Colombia

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4402
Author(s):  
Julián Urrego-Ortiz ◽  
J. Alejandro Martínez ◽  
Paola A. Arias ◽  
Álvaro Jaramillo-Duque

The description and forecasting of hourly solar resource is fundamental for the operation of solar energy systems in the electric grid. In this work, we provide insights regarding the hourly variation of the global horizontal irradiance in Medellín, Colombia, a large urban area within the tropical Andes. We propose a model based on Markov chains for forecasting the hourly solar irradiance for one day ahead. The Markov model was compared against estimates produced by different configurations of the weather research forecasting model (WRF). Our assessment showed that for the period considered, the average availability of the solar resource was of 5 PSH (peak sun hours), corresponding to an average daily radiation of ~5 kWh/m2. This shows that Medellín, Colombia, has a substantial availability of the solar resource that can be a complementary source of energy during the dry season periods. In the case of the Markov model, the estimates exhibited typical root mean squared errors between ~80 W/m2 and ~170 W/m2 (~50%–~110%) under overcast conditions, and ~57 W/m2 to ~171 W/m2 (~16%–~38%) for clear sky conditions. In general, the proposed model had a performance comparable with the WRF model, while presenting a computationally inexpensive alternative to forecast hourly solar radiation one day in advance. The Markov model is presented as an alternative to estimate time series that can be used in energy markets by agents and power-system operators to deal with the uncertainty of solar power plants.

2014 ◽  
Vol 53 (11) ◽  
pp. 2571-2588 ◽  
Author(s):  
Alberto Troccoli ◽  
Jean-Jacques Morcrette

AbstractPrediction of direct solar radiation is key in sectors such as solar power and agriculture; for instance, it can enable more efficient production of energy from concentrating solar power plants. An assessment of the quality of the direct solar radiation forecast by two versions of the European Centre for Medium-Range Weather Forecasts (ECMWF) global numerical weather prediction model up to 5 days ahead is carried out here. The performance of the model is measured against observations from four solar monitoring stations over Australia, characterized by diverse geographic and climatic features, for the year 2006. As a reference, the performance of global radiation forecast is carried out as well. In terms of direct solar radiation, while the skill of the two model versions is very similar, and with relative mean absolute errors (rMAEs) ranging from 18% to 45% and correlations between 0.85 and 0.25 at around midday, their performance is substantially enhanced via a simple postprocessing bias-correction procedure. There is a marked dependency on cloudy conditions, with rMAEs 2–4 times as large for very cloudy-to-overcast conditions relative to clear-sky conditions. There is also a distinct dependency on the background climatic clear-sky conditions of the location considered. Tests made on a simulated operational setup targeting three quantiles show that direct radiation forecasts achieve potentially high scores. Overall, these analyses provide an indication of the potential practical use of direct irradiance forecast for applications such as solar power operations.


2020 ◽  
Vol 30 (3) ◽  
pp. 480-497
Author(s):  
Dmitriy S. Strebkov ◽  
Yuriy Kh. Shogenov ◽  
Nikolay Yu. Bobovnikov

Introduction. An urgent scientific problem is to increase the efficiency of using solar energy in solar power plants (SES). The purpose of the article is to study methods for increasing the efficiency of solar power plants. Materials and Methods. Solar power plants based on modules with a two-sided working surface are considered. Most modern solar power plants use solar modules. The reflection of solar radiation from the earth’s surface provides an increase in the production of electrical energy by 20% compared with modules with a working surface on one side. It is possible to increase the efficiency of using solar energy by increasing the annual production of electric energy through the creation of equal conditions for the use of solar energy by the front and back surfaces of bilateral solar modules. Results. The article presents a solar power plant on a horizontal surface with a vertical arrangement of bilateral solar modules, a solar power station with a deviation of bilateral solar modules from a vertical position, and a solar power plant on the southern slope of the hill with an angle β of the slope to the horizon. The formulas for calculating the sizes of the solar energy reflectors in the meridian direction, the width of the solar energy reflectors, and the angle of inclination of the solar modules to the horizontal surface are given. The results of computer simulation of the parameters of a solar power plant operating in the vicinity of Luxor (Egypt) are presented. Discussion and Conclusion. It is shown that the power generation within the power range of 1 kW takes a peak value for vertically oriented two-sided solar modules with horizontal reflectors of sunlight at the installed capacity utilization factor of 0.45. At the same time, when the solar radiation becomes parallel to the plane of vertical solar modules, there is a decrease in the output of electricity. The proposed design allows equalizing and increasing the output of electricity during the maximum period of solar radiation. Vertically oriented modules are reliable and easy to use while saving space between modules.


2019 ◽  
Vol 9 (6) ◽  
pp. 1131 ◽  
Author(s):  
Luis Valentín ◽  
Manuel Peña-Cruz ◽  
Daniela Moctezuma ◽  
Cesar Peña-Martínez ◽  
Carlos Pineda-Arellano ◽  
...  

Solar resource assessment is fundamental to reduce the risk in selecting the solar power-plants’ location; also for designing the appropriate solar-energy conversion technology and operating new sources of solar-power generation. Having a reliable methodology for solar irradiance forecasting allows accurately identifying variations in the plant energy production and, as a consequence, determining improvements in energy supply strategies. A new trend for solar resource assessment is based on the analysis of the sky dynamics by processing a set of images of the sky dome. In this paper, a methodology for processing the sky dome images to obtain the position of the Sun is presented; this parameter is relevant to compute the solar irradiance implemented in solar resource assessment. This methodology is based on the implementation of several techniques in order to achieve a combined, fast, and robust detection system for the Sun position regardless of the conditions of the sky, which is a complex task due to the variability of the sky dynamics. Identifying the correct position of the Sun is a critical parameter to project whether, in the presence of clouds, the occlusion of the Sun is occurring, which is essential in short-term solar resource assessment, the so-called irradiance nowcasting. The experimental results confirm that the proposed methodology performs well in the detection of the position of the Sun not only in a clear-sky day, but also in a cloudy one. The proposed methodology is also a reliable tool to cover the dynamics of the sky.


2016 ◽  
Author(s):  
Dietmar J. Baumgartner ◽  
Werner Pötzi ◽  
Heinrich Freislich ◽  
Heinz Strutzmann ◽  
Astrid M. Veronig ◽  
...  

Abstract. The accuracy of solar radiation measurements (for direct and diffuse radiation) depends significantly on the precision of the operational sun-tracking device. Thus rigid targets for instrument performance and operation have been specified for international monitoring networks, such as e.g., the Baseline Surface Radiation Network (BSRN) operating under the auspices of the World Climate Research Program (WCRP). Sun-tracking devices fulfilling these accuracy requirements are available from various instrument manufacturers, however none of the commercially available systems comprises an automatic accuracy control system, allowing platform operators to independently validate the pointing accuracy of sun-tracking sensors during operation. Here we present KSO-STREAMS (KSO-SunTRackEr Accuracy Monitoring System), a fully automated, system independent and cost-effective method for evaluating the pointing accuracy of sun-tracking devices. We detail the monitoring system setup, its design and specifications and results from its application to the sun-tracking system operated at the Austrian RADiation network (ARAD) site Kanzelhöhe Observatory (KSO). Results from an evaluation campaign from March to June 2015 show that the tracking accuracy of the device operated at KSO lies for the vast majority of observations (99.8 %) within BSRN specifications (i.e., 0.1° tracking accuracy). Evaluation of manufacturer specified active tracking accuracies (0.02°), during periods with direct solar radiation exceeding 300 W m−2, shows that these are satisfied for 72.9 % of observations. Tracking accuracies are highest during clear-sky conditions and on days where prevailing clear-sky conditions are interrupted by frontal movement: in these cases we obtain complete fulfillment of BSRN requirements and 76.4 % of observations within manufacturer specified active tracking accuracies. Limitations to tracking surveillance arise during overcast conditions and periods of partial solar limb coverage by clouds. On days with variable cloud-cover 78.1 % (99.9 %) of observations meet active tracking (BSRN) accuracy requirements while for days with prevailing overcast conditions these numbers reduce to 64.3 % (99.5 %), respectively.


Kilat ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 115-124
Author(s):  
Tri Joko Pramono ◽  
Erlina Erlina ◽  
Zainal Arifin ◽  
Jef Saragih

Solar Power Plant is one of the New Renewable Energy power plants. Solar panels can produce unlimited amounts of electrical energy directly taken from the sun, with no rotating parts and no fuel. In this study are optimize solar power plants using hybrid systems with electricity companies and the use of semi-transparent solar panels in high rise buildings to meet the burden of the building. The research will discussed about use of solar power plants using semi-transparent solar panels in multi-storey buildings. The solar panel used for the facade is a semi-transparent solar panel makes its function become two, that is to produce electrical energy as well as glass through which sunlight and can see the view outside the building without reducing the building's aesthetic value. In this study is the value of solar radiation taken from west is the lowest value in November 1.4 Kwh can produce energy PLTS 3,855 Kwh and the highest solar radiation in July amounted to 3.75 Kwh can produce energy PLTS 10.331 Kwh. From the utilization of this PLTS system, Performance Ratio of 85% was obtained using study of 36 panels on the 3rd to 5th floors, this system can be said to feasible.  


After shading a light on the extraterrestrial solar radiation in the chapter 3 it is important to evaluate the global terrestrial solar radiation and its components. The information on terrestrial solar radiation is required in several different forms depending on the kinds of calculations and kind of application that are to be done. Of course, terrestrial solar radiation on the horizontal plane depends on the different weather conditions such as cloud cover, relative humidity, and ambient temperature. Therefore, the impact of the atmosphere on solar radiation should be considered. One of the most important points of terrestrial solar radiation evaluation is its determination during clear sky conditions. Therefore, in this chapter, the equations that determine the air mass basing on available theories are given and the clear sky conditions are introduced with shading a light on the previous work in identifying clear sky conditions. Taking into consideration that, clear sky solar radiation estimation is of great importance for solar tracking, a detailed review of main available models is given in this chapter. As daily, monthly, seasonally, biannually and yearly mean daily solar radiations are required information for designing and installing long term tracking systems, different available methods are commented regarding their applicability for the estimation of solar radiation information in the desired format from the data that are available. An important accent is paid also on the assessment and comparison of monthly mean daily solar radiation estimation models.


2011 ◽  
Vol 11 (7) ◽  
pp. 3281-3289 ◽  
Author(s):  
J. Xu ◽  
C. Li ◽  
H. Shi ◽  
Q. He ◽  
L. Pan

Abstract. This study investigated the decadal variation of the direct surface solar radiation (DiSR) and the diffuse surface solar radiation (DfSR) during 1961–2008 in the Shanghai megacity as well as their relationships to Aerosol Optical Depth (AOD) under clear-sky conditions. Three successive periods with unique features of long term variation of DiSR were identified for both clear-sky and all-sky conditions: a "dimming" period from the late 1960s to the mid 1980s, a "stabilization"/"slight brightening" period from the mid 1980s to the mid 1990s, and a "renewed dimming" period thereafter. During the two dimming periods of DiSR, DfSR brightened significantly under clear-sky conditions, indicating that change in atmospheric transparency resulting from aerosol emission has an important role on decadal variation of surface solar radiation (SSR) over this area. The analysis on the relationship between the Moderate-resolution Imaging Spectroradiometer (MODIS) retrieved AOD and the corresponding hourly measurements of DiSR and DfSR under clear-sky conditions clearly revealed that AOD is significantly correlated and anti-correlated with DfSR and DiSR, respectively, both above 99% confidence in all seasons, indicating the great impact of aerosols on SSR through absorption and/or scattering in the atmosphere. In addition, both AOD and the corresponding DiSR and DfSR measured during the satellite passage over Shanghai show obvious weekly cycles. On weekends, AOD is lower than the weekly average, corresponding to higher DiSR and lower DfSR, while the opposite pattern was true for weekdays. Less AOD on weekends due to the reduction of transportation and industrial activities results in enhancement of atmospheric transparency under cloud free conditions so as to increase DiSR and decrease DfSR simultaneously. Results show that aerosol loading from the anthropogenic emissions is an important modulator for the long term variation of SSR in Shanghai.


Sign in / Sign up

Export Citation Format

Share Document