scholarly journals Biodiesel Production Processes and Sustainable Raw Materials

Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4408 ◽  
Author(s):  
Ramos ◽  
Dias ◽  
Puna ◽  
Gomes ◽  
Bordado

Energy security and environmental concerns, related to the increasing carbon emissions, have prompted in the last years the search for renewable and sustainable fuels. Biodiesel, a mixture of fatty acids alkyl esters shows properties, which make it a feasible substitute for fossil diesel. Biodiesel can be produced using different processes and different raw materials. The most common, first generation, biodiesel is produced by methanolysis of vegetable oils using basic or acid homogeneous catalysts. The use of vegetable oils for biodiesel production raises serious questions about biodiesel sustainability. Used cooking oils and animal fats can replace the vegetable oils in biodiesel production thus allowing to produce a more sustainable biofuel. Moreover, methanol can be replaced by ethanol being totally renewable since it can be produced by biomass fermentation. The substitution of homogeneous catalyzed processes, nowadays used in the biodiesel industry, by heterogeneous ones can contribute to improve the biodiesel sustainability with simultaneous cost reduction. From the existing literature on biodiesel production, it stands out that several strategies can be adopted to improve the sustainability of biodiesel. A literature review is presented to underline the strategies allowing to improve the biodiesel sustainability.

2015 ◽  
Vol 9 (7) ◽  
pp. 99 ◽  
Author(s):  
Nyoman Puspa Asri ◽  
Diah Agustina Puspita Sari

Synthesis of biodiesel is a strategic step in overcoming energy scarcity and the environmental degradationcaused by the continuous use of the petroleum based energy. Biodiesel as an alternative fuel for diesel engine isproduced from renewable resources such as vegetable oils and animal fats. The main obstacle in the biodieselproduction is the high price of the raw materials, resulting in the price of biodiesel is not competitive comparedto the petroleum diesel. Therefore, the use of waste frying oils (WFO) is one way to reduce the cost of biodieselproduction, because of its availability and low price. In the present work, WFO from California Fried chicken(CFC) restaurants in Surabaya were used as feed stock for the biodiesel production. The experiments wereconducted using three steps of processes: pre-treatment of WFO, preparation of alumina based compositecatalyst CaO/KI/γ-Al2O3 and transesterification of treated WFO. WFO was treated by several types and variousamounts of activated adsobents. The treated WFO was transesterified in three neck glass batch reactor withrefluxed methanol using CaO/KI/γ-Al2O3. The results reveal that the best method for treating WFO is using 7.5%(wt. % to WFO) of coconut coir. Alumina based composite catalyst CaO/KI/γ-Al2O3 was very promising fortransesterification of WFO into biodiesel. The yield of biodiesel was 83% and obtained at 65ºC, 5 h of reactiontime, 1:18 of molar ratio WFO to methanol and 6% amount of catalyst.


Author(s):  
Saidat Olanipekun Giwa ◽  
Maku Barbanas Haggai ◽  
Abdulwahab Giwa

In the recent time, there is increasing research in the area of alternative fuels as the exhausts of presently used petroleum-based fuels have been identified to have negative effects on the environment. Fuels produced from plant oils and animal fats have the tendencies of replacing petro fuels since they are renewable in nature. One of these renewable fuels is biodiesel. However, the homogenous catalyst used in biodiesel production has some drawbacks such as difficulty in separation from the fuel, soap formation and corrosiveness of the product mixture. In this work, the use of heterogeneous catalyst sourced from local raw materials (kaolin and eggshell) for the production of biodiesel from oil of desert date seed has been investigated. The kaolin obtained from Alkaleri Mining Site, Bauchi, was calcined in an oven at 800 °C for 3 h. The calcined kaolin was then chemically activated. Also, the eggshell-based catalyst was produced from raw eggshells after washing, drying, grinding, sieving using 0.3 mm sieve size and calcining at 900 °C for 3 h. Furthermore, the oil content of the desert date seed, which was acquired from a local market in Bauchi, was extracted via solvent extraction in a laboratory with a yield of 42%. Then, the biodiesel was subsequently prepared by mixing the oil, methanol and catalyst in a flat bottom flask and heating the mixture for a specified period. The catalyst concentration, methanol to oil ratio and time of reaction were subsequently varied to obtain the best yield. The results obtained revealed that an optimum yield of 29% could be obtained at methanol to oil ratio of 6:1 and a reaction time of 60 min using 1.5 g of eggshell-based catalyst while an optimum yield of 22% was obtained with 0.6 g for kaolin-based catalyst at a reaction time of 60 min and methanol to oil ratio of 4:1. It is recommended that further work should be carried out to improve on the yield of the biodiesel obtained using the heterogeneous catalysts.


2010 ◽  
Vol 07 (13) ◽  
pp. 30-32
Author(s):  
Luis Alcides Brandini DE BONI ◽  
Eduardo GOLDANI

Several raw materials have been used in the biodiesel production since the implementation of the National Program of Production and Use of Biodiesel through the Brazilian Law 11.097 of January 13th 2005. The most common way used to produce this biofuel is the transesterification reaction which, among others features, requires a raw material with low acidity level. When this condition is not reached, the esterification reaction is alternatively used to convert free fatty acids into mono alkyl esters. Sulfuric acid is one of the catalysts that can be used in the esterification reaction which, therefore, can react with the alcohol generating dimethylsulfate. The aim of this technical report is to discuss the chemical reactions involved when the esterification reaction is used and the effects that this may cause, such as exposure to carcinogenic products.


Author(s):  
Zsanett Herseczki ◽  
Tamás Varga ◽  
Gyula Marton

Methyl esters of fatty acids (also known as biodiesel) made from transesterification of vegetable oils and animal fats with methanol, have shown a lot of promise as alternative diesel fuels. Glycerol is the inevitable byproduct of transesterification process. While there are existing markets for glycerol, a significant increase in availability of glycerol, resulting from the expanded use of vegetable oils and animal fats, would destabilize the glycerol market. In this study, the synthesis of glycerol carbonate from glycerol and dimethyl carbonate was investigated. Glycerol carbonate is a key multifunctional compound employed as a solvent, additive, monomer and chemical intermediate. The resulting glycerol carbonate was obtained in almost quantitative yield. According to measured data a well-elaborated mathematical model of the reactor was used for experiments can be adequate to assign parameters of kinetic equations of the assumed reaction mechanism. Component mass balances were built into the reactor model and order of reactions was fixed.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1901
Author(s):  
Maria Gabriela De Paola ◽  
Ivan Mazza ◽  
Rosy Paletta ◽  
Catia Giovanna Lopresto ◽  
Vincenza Calabrò

Small-scale plants that produce biodiesel have many social, economic and environmental advantages. Indeed, small plants significantly contribute to renewable energy production and rural development. Communities can use/reuse local raw materials and manage independently processes to obtain biofuels by essential, simple, flexible and cheap tools for self-supply. The review and understanding of recent plants of small biodiesel production is essential to identify limitations and critical units for improvement of the current process. Biodiesel production consists of four main stages, that are pre-treatment of oils, reaction, separation of products and biodiesel purification. Among lots of possibilities, waste cooking oils were chosen as cheap and green sources to produce biodiesel by base-catalyzed transesterification in a batch reactor. In this paper an overview on small-scale production plants is presented with the aim to put in evidence process, materials, control systems, energy consumption and economic parameters useful for the project and design of such scale of plants. Final considerations related to the use of biodiesel such as renewable energy storage (RES) in small communities are discussed too.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1121
Author(s):  
Mohammed Salaheldeen ◽  
Abdalbasit Adam Mariod ◽  
Mohamed Kheireddine Aroua ◽  
S. M. Ashrafur Rahman ◽  
Manzoore Elahi M. Soudagar ◽  
...  

Triglycerides are the main constituents of lipids, which are the fatty acids of glycerol. Natural organic triglycerides (viz. virgin vegetable oils, recycled cooking oils, and animal fats) are the main sources for biodiesel production. Biodiesel (mono alkyl esters) is the most attractive alternative fuel to diesel, with numerous environmental advantages over petroleum-based fuel. The most practicable method for converting triglycerides to biodiesel with viscosities comparable to diesel fuel is transesterification. Previous research has proven that biodiesel–diesel blends can operate the compression ignition engine without the need for significant modifications. However, the commercialization of biodiesel is still limited due to the high cost of production. In this sense, the transesterification route is a crucial factor in determining the total cost of biodiesel production. Homogenous base-catalyzed transesterification, industrially, is the conventional method to produce biodiesel. However, this method suffers from limitations both environmentally and economically. Although there are review articles on transesterification, most of them focus on a specific type of transesterification process and hence do not provide a comprehensive picture. This paper reviews the latest progress in research on all facets of transesterification technology from reports published by highly-rated scientific journals in the last two decades. The review focuses on the suggested modifications to the conventional method and the most promising innovative technologies. The potentiality of each technology to produce biodiesel from low-quality feedstock is also discussed.


2018 ◽  
Vol 29 (5) ◽  
pp. 732-741 ◽  
Author(s):  
Farah Halek ◽  
Ali Kavousi-Rahim

Biodiesel is a renewable energy resource consisting of the alkyl monoesters of fatty acids obtained from vegetable oils, waste cooking oils, or animal fats. Biodiesel has been noticed recently as an alternative to fossil fuels. Previous studies have shown that biodiesel produces less pollutants compared to diesel fuel. Biodiesel fuel increases the emission of NOx exceptionally. Recently, it has been found that antioxidant addition to biodiesel is a solution to solve the problem. The purpose of this research is to study the effect of antioxidants addition on the emissions of CO, HC, and NOx from biodiesel fuel. Exhaust emissions of an agriculture diesel engine were studied using biodiesel blend with a 500 ppm propyl gallate (PrG) (propyl-3,4,5-trihydroxybenzoate) and butylated hydroxy anisole (BhA) (2-tert-butyl-4-methoxyphenol) as two major antioxidants. Biodiesel used in this research was prepared through NaOH catalyzed transesterification of a waste cooking oil that originally was taken from sunflower oil, with the assistance of ultrasonic homogenizer. After biodiesel production, five blends including neat diesel, B10, B20, B20 + 500 ppm PrG, and B20+ 500 ppm BhA were used as fuel and the emitted gases were analyzed. The results of this work demonstrated that the addition of antioxidants has no significant effect on lowering CO emission, as well as lowering HC; but the addition of antioxidants results in more efficient reduction of NOx emission from diesel exhaust. In general, BhA showed better results compared to PrG.


2016 ◽  
Vol 5 (5) ◽  
pp. 8-21
Author(s):  
Неверова ◽  
V. Neverova ◽  
Марков ◽  
V. Markov ◽  
Бовэнь ◽  
...  

The depletion of oil fields and the deteriorating environmental situation leads to the need for the search of new alternative sources of energy. Actuality of the article due to the need for greater use of the alternative fuels in internal combustion engines is necessary. Fuels produced from vegetable oils and animal fats as advanced alternative fuels for diesel engines are considered. These fuels are produced from renewable raw materials and are characterized by good environmental qualities. Advantages of using fuels of vegetable origin as motor fuels are shown. Experimental research of diesel engine D-245.12S functioning on mixtures of diesel fuel and mustard oil of various percentage is given. One of the most wide spread vegetable oils in Russia is mustard oil. Possible ways of using mustard oil as fuel for a diesel engine are considered. An opportunity of improving characteristics of exhaust gases toxicity by using these mixtures as a fuel for automobile and tractor diesel engines is demonstrated.


1992 ◽  
Vol 28 (4) ◽  
pp. 230-237 ◽  
Author(s):  
I. G. Fuks ◽  
A. Yu. Evdokimov ◽  
A. A. Dzhamalov ◽  
A. Luksa

Sign in / Sign up

Export Citation Format

Share Document