scholarly journals The Flex-OeCoS—a Novel Optically Accessible Test Rig for the Investigation of Advanced Combustion Processes under Engine-Like Conditions

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1794
Author(s):  
Bruno Schneider ◽  
Christian Schürch ◽  
Konstantinos Boulouchos ◽  
Stefan Herzig ◽  
Marc Hangartner ◽  
...  

A new test rig has been designed, built and commissioned, and is now jointly pursued to facilitate experimental investigations into advanced combustion processes (i.e., dual fuel, multi-mode) under turbulent conditions at high, engine-like temperature and pressure levels. Based on a standard diesel engine block, it offers much improved optical access to the in-cylinder processes due to its separated and rotated arrangement of the compression volume and combustion chamber, respectively. A fully variable pneumatic valve train and the appropriate preconditioning of the intake air allows it to represent a wide range of engine-like in-cylinder conditions regarding pressures, temperatures and turbulence levels. The modular design of the test rig facilitates easy optimizations of the combustion chamber/cylinder head design regarding different experimental requirements. The name of the new test rig, Flex-OeCoS, denotes its Flexibility regarding Optical engine Combustion diagnostics and/or the development of corresponding Sensing devices and applications. Measurements regarding in-cylinder gas pressures, temperatures and the flow field under typical operating conditions are presented to complete the description and assessment of the new test rig.

Author(s):  
Marek Dzida ◽  
Krzysztof Kosowski

In bibliography we can find many methods of determining pressure drop in the combustion chambers of gas turbines, but there is only very few data of experimental results. This article presents the experimental investigations of pressure drop in the combustion chamber over a wide range of part-load performances (from minimal power up to take-off power). Our research was carried out on an aircraft gas turbine of small output. The experimental results have proved that relative pressure drop changes with respect to fuel flow over the whole range of operating conditions. The results were then compared with theoretical methods.


Author(s):  
B. R. Nichols ◽  
R. L. Fittro ◽  
C. P. Goyne

Many high-speed, rotating machines across a wide range of industrial applications depend on fluid film bearings to provide both static support of the rotor and to introduce stabilizing damping forces into the system through a developed hydrodynamic film wedge. Reduced oil supply flow rate to the bearings can cause cavitation, or a lack of a fully developed film layer, at the leading edge of the bearing pads. Reducing oil flow has the well-documented effects of higher bearing operating temperatures and decreased power losses due to shear forces. While machine efficiency may be improved with reduced lubricant flow, little experimental data on its effects on system stability and performance can be found in the literature. This study looks at overall system performance of a test rig operating under reduced oil supply flow rates by observing steady-state bearing performance indicators and baseline vibrational response of the shaft. The test rig used in this study was designed to be dynamically similar to a high-speed industrial compressor. It consists of a 1.55 m long, flexible rotor supported by two tilting pad bearings with a nominal diameter of 70 mm and a span of 1.2 m. The first bending mode is located at approximately 5,000 rpm. The tiling-pad bearings consist of five pads in a vintage, flooded bearing housing with a length to diameter ratio of 0.75, preload of 0.3, and a load-between-pad configuration. Tests were conducted over a number of operating speeds, ranging from 8,000 to 12,000 rpm, and bearing loads, while systematically reducing the oil supply flow rates provided to the bearings under each condition. For nearly all operating conditions, a low amplitude, broadband subsynchronous vibration pattern was observed in the frequency domain from approximately 0–75 Hz. When the test rig was operated at running speeds above its first bending mode, a distinctive subsynchronous peak emerged from the broadband pattern at approximately half of the running speed and at the first bending mode of the shaft. This vibration signature is often considered a classic sign of rotordynamic instability attributed to oil whip and shaft whirl phenomena. For low and moderate load conditions, the amplitude of this 0.5x subsynchronous peak increased with decreasing oil supply flow rate at all operating speeds. Under the high load condition, the subsynchronous peak was largely attenuated. A discussion on the possible sources of this subsynchronous vibration including self-excited instability and pad flutter forced vibration is provided with supporting evidence from thermoelastohydrodynamic (TEHD) bearing modeling results. Implications of reduced oil supply flow rate on system stability and operational limits are also discussed.


1966 ◽  
Vol 181 (1) ◽  
pp. 53-73 ◽  
Author(s):  
I. K. Csillag

The demand for electric power has doubled in the last decade. The most economical way to meet this demand is by building large-output generating units. The study of the major factors which determine the output of such generators shows that the only effective way to increase the output is by improving the cooling of their windings. For that reason design has progressed from air-cooling to indirect hydrogen-cooling, then to direct hydrogen-cooling. Now the trend is towards direct water-cooling where the water is in direct contact with the copper windings. The introduction of water into the stator winding was established in 1956 (1)† and was in fact directly responsible for the present increase in unit rating. The introduction of water to a rotating winding presents difficult problems in both design and manufacture. The test rig dealt with in this paper was built to study some of these problems and to carry out experimental investigations on a full size model of the special hydraulic features for a water-cooled turbo-generator rotor. The investigations were concentrated around the following five different problems which are dealt with in detail: (1) increase in pressure drop due to rotation; (2) free-rotating seal (inlet seal) (2); (3) vacuum-breaking device (water outlet) (3); (4) loss-distribution in the rotor; (5) measurement of the rotor vibrations in various operating conditions.


Author(s):  
Korukonda Venkata Lakshmi Narayana Rao ◽  
B. V. S. S. S. Prasad ◽  
Ch. Kanna Babu ◽  
Girish K. Degaonkar

The Gas turbine combustion chamber is the highest thermally loaded component where the temperature of the combustion gases is higher than the melting point of the liner that confines the gases. Combustor liner temperatures have to be evaluated at all the operating conditions in the operating envelope to ensure a satisfactory liner life and structural integrity. On experimental side the combustion chamber rig testing involves a lot of time and is very expensive, while the numerical computations and simulations has to be validated with the experimental results. This paper is mainly based on the work carried out in validating the liner temperatures of a straight flow annular combustion chamber for an aero engine application. Limited experiments have been carried out by measuring the liner wall temperatures using k-type thermocouples along the liner axial length. The experiments on the combustion chamber testing are carried out at the engine level testing. The liner temperature which is numerically computed by CHT investigations using CFX code is verified with the experimental data. This helped in better understanding the flow characterization around and along the liner wall. The main flow variables used are the mass flow rate, temperature and the pressure at the combustor inlet. Initially, the fuel air ratio is used accordingly to maintain the same T4/T3 ratio. The effect of liner temperature with T3 is studied. Since T4 is constant, the liner temperature is only dependent on T3 and follows a specific temperature distribution for the given combustor geometry. Hence this approach will be very useful in estimating the liner temperatures at any given T3 for a given combustor geometry. Further the liner temperature is also estimated at other fuel air ratios (different T4/T3 ratios) by using the verified CHT numerical computations and found that TL/T3 remains almost constant for any air fuel ratio that is encountered in the operating envelope of the aero engine.


Author(s):  
S. Vesely´ ◽  
A. Soudarev ◽  
E. Vinogradov ◽  
Y. Zacharov

Currently, more than 1,500 gas turbines are in operation on natural gas transmission lines all over Europe. These turbines do not comply with the requirements for toxic substances content in exhaust gases. Therefore, an environmentally friendly update of these turbines is a hot topic now, especially because these turbines are supposed to remain in operation for another 10 or 15 years. Besides, environmentally friendly update is a specific issue that differs from the development of a new low-emission combustion chamber. The authors participated in environmentally friendly update of more than 500 gas turbines of this design in Russia, Ukraine, Slovakia, Czech Republic, Germany, and Hungary. As new emission limits are expected to be issued in the EU, a new low-emission burner was developed that makes use of a combination of kinetic and diffusion combustion to achieve low NOx and CO emissions. The burner operation in combustion chambers of gas turbines is characterized by a wide range of the coefficient of excess air from idle run to full performance. Therefore, the control of the quantity of primary air is necessary. The paper will describe the main stages of the burner research. Tests were performed on an atmospheric pressure test rig where the basic characteristics were gained. The influence of pressure was examined on a special test rig at 0.75–1.1 MPa of pressure. Tests have confirmed that the required NOx and CO emission limits can be achieved with the designed burner. The low emission burner was used for the combustion chamber of a 6 MW gas turbine. The tests performed on a part of a model burner will be presented and an analysis of measurement results will be given.


Inventions ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 16 ◽  
Author(s):  
Zine Aidoun ◽  
Khaled Ameur ◽  
Mehdi Falsafioon ◽  
Messaoud Badache

Two-phase ejectors play a major role as refrigerant expansion devices in vapor compression systems and can find potential applications in many other industrial processes. As a result, they have become a focus of attention for the last few decades from the scientific community, not only for the expansion work recovery in a wide range of refrigeration and heat pump cycles but also in industrial processes as entrainment and mixing enhancement agents. This review provides relevant findings and trends, characterizing the design, operation and performance of the two-phase ejector as a component. Effects of geometry, operating conditions and the main developments in terms of theoretical and experimental approaches, rating methods and applications are discussed in detail. Ejector expansion refrigeration cycles (EERC) as well as the related theoretical and experimental research are reported. New and other relevant cycle combinations proposed in the recent literature are organized under theoretical and experimental headings by refrigerant types and/or by chronology whenever appropriate and systematically commented. This review brings out the fact that theoretical ejector and cycle studies outnumber experimental investigations and data generation. More emerging numerical studies of two-phase ejectors are a positive step, which has to be further supported by more validation work.


Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 843 ◽  
Author(s):  
Max Marian ◽  
Tim Weikert ◽  
Stephan Tremmel

The overall energy efficiency of machine elements and engine components could be improved by using new technologies such as surface modifications. In the literature, surface engineering approaches like micro-texturing and the application of diamond-like carbon (DLC) coatings were frequently studied separately, with focus on a specific model contact and lubrication conditions. The contribution of the current study is to elucidate and compare the underlying friction reduction mechanisms of the aforementioned surface modifications in an application-orientated manner. The study applied the operating conditions of the thermo-elastohydrodynamically lubricated (TEHL) cam/tappet-contact of the valve train. Therefore, tribological cam/bucket tappet component Stribeck tests were used to determine the friction behavior of ultrashort pulse laser fabricated microtextures and PVD/PECVD deposited silicon-doped amorphous carbon coatings. Moreover, advanced surface characterization methods, as well as numerical TEHL tribo-simulations, were utilized to explore the mechanisms responsible for the observed tribological effects. The results showed that the DLC-coating could reduce the solid and fluid friction force in a wide range of lubrication regimes. Conversely, micro-texturing may reduce solid friction while increasing the fraction of fluid friction.


Author(s):  
M. Rautenberg ◽  
M. Malobabic ◽  
A. Mobarak ◽  
M. Abdel Kader

A Clausius-Rankine-cycle has been proposed to recover waste heat from a piston engine. This waste heat is then used to supercharge the cylinders by means of a steam turbocharger. The advantage of using this steam turbocharger system is to avoid the losses due to the engine back pressure which accompany the use of the conventional exhaust gas turbocharger. The mass flow rate of turbines for steam turbochargers in the range from 1 to 10 kW is about 0.03 to 0.08 kg/s. This implies a special turbine design, characterised by partial admission and supersonic flow, which unfortunately leads to low turbine efficiencies. A small Pelton turbine for steam has been designed and produced. The turbine is connected to the radial compressor of a conventional exhaust gas turbocharger which works, in this case, as a brake to dissipate the generated turbine power. A special test rig has been built to carry out the experimental investigations on the proposed Pelton turbine. The test rig is supplied with superheated steam from the University’s power plant. Two different rotors for this Pelton turbine have been tested under the same operating conditions (rotor 2 see Fig. 1). Some experimental test results of a special Pelton turbine are presented and discussed in this report.


Author(s):  
O. Maqsood ◽  
M. LaViolette ◽  
R. Woodason

Localized damage to turbine inlet nozzles is typically caused by non-uniform temperature distributions at the combustion chamber exit. This damage results in decreased turbine performance and can lead to expensive repair or replacement. A test rig was designed and constructed for the Rolls-Royce Allison 250-C20B dual-entry combustion chamber to investigate the effects of inlet air distortion on the combustion chamber’s exit temperature fields. The rig includes a purposely built water cooled thermocouple rake to sweep the exit plane of the combustion chamber. Test rig operating conditions simulated normal engine cruise conditions by matching the quasi-non-dimensional Mach number, equivalence ratio and Sauter mean diameter. The combustion chamber was tested with an even distribution of inlet air and a 4% difference in airflow at either combustion chamber inlet. An even distribution of inlet air to the combustion chamber did not produce a uniform temperature profile and varying the inlet distribution of air exacerbated the profile’s non-uniformity. The design of the combustion chamber promoted the formation of an oval-shaped toroidal vortex inside the combustion liner, causing localized hot and cool sections separated by 90° that were apparent in the exhaust. Uneven inlet air distributions skewed the oval vortex, increasing the temperature of the hot section nearest the side with the most airflow and decreasing the temperature of the hot section on the opposite side.


1978 ◽  
Author(s):  
R. J. Russell ◽  
J. J. Witton

A study has been made of the turbine erosion problem encountered in a marinized aero gas turbine which arose from the change of fuel type necessitated by the marine application. The work has involved the development of a technique for collecting carbon shed from the combustion chamber under engine operating conditions. Tests using the collector were made with a single combustor test rig and compared to engine experience. Combustion chamber modifications were developed having low solids emissions and their emissions characterized using the collector. The data from the collector show that smaller particles than hitherto collected can produce significant long-term erosion and that reduction on both size and quantity of particles is necessary to reduce erosion to acceptable levels. The data obtained in this study are compared with other published information on the basic erosion process and erosion in gas turbines by natural mineral dusts. The implications of the results to current and future engines are discussed.


Sign in / Sign up

Export Citation Format

Share Document