scholarly journals On Friction Reduction by Surface Modifications in the TEHL Cam/Tappet-Contact-Experimental and Numerical Studies

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 843 ◽  
Author(s):  
Max Marian ◽  
Tim Weikert ◽  
Stephan Tremmel

The overall energy efficiency of machine elements and engine components could be improved by using new technologies such as surface modifications. In the literature, surface engineering approaches like micro-texturing and the application of diamond-like carbon (DLC) coatings were frequently studied separately, with focus on a specific model contact and lubrication conditions. The contribution of the current study is to elucidate and compare the underlying friction reduction mechanisms of the aforementioned surface modifications in an application-orientated manner. The study applied the operating conditions of the thermo-elastohydrodynamically lubricated (TEHL) cam/tappet-contact of the valve train. Therefore, tribological cam/bucket tappet component Stribeck tests were used to determine the friction behavior of ultrashort pulse laser fabricated microtextures and PVD/PECVD deposited silicon-doped amorphous carbon coatings. Moreover, advanced surface characterization methods, as well as numerical TEHL tribo-simulations, were utilized to explore the mechanisms responsible for the observed tribological effects. The results showed that the DLC-coating could reduce the solid and fluid friction force in a wide range of lubrication regimes. Conversely, micro-texturing may reduce solid friction while increasing the fraction of fluid friction.

Author(s):  
Yun-Hsiang Sun ◽  
Tao Chen ◽  
Cyrus Shafai

This work proposes a simple but general experimental approach including the rig design and measurement procedure to carry out a wide range of experiments required for identifying parameters for LuGre dynamic friction model. The design choice is based on accuracy of the estimated friction and flexibility in terms of changing contact conditions. The experimental results allow a complete LuGre model, which facilitates, but not limited to, other advanced friction modeling and high performance controller design if needed. In addition, several well-known dynamic friction features (varying break-away force, friction lag and presliding) are successfully demonstrated by our rig, which indicates the adequacy of our approach for capturing highly sophisticated and dynamic friction behavior over a wide range of operating conditions. The proposed set-up and the produced experimental data are believed to greatly facilitate the development of advanced friction compensation and modeling in friction affected mechanisms.


2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Moataz Abdulhafez ◽  
Angela J. McComb ◽  
Mostafa Bedewy

Abstract The growth of laser-induced nanocarbons, referred to here as laser-induced nanocarbon (LINC) for short, directly on polymeric surfaces is a promising route toward surface engineering of commercial polymers. This paper aims to demonstrate how this new approach can enable achieving varied surface properties based on tuning the nanostructured morphology of the formed graphitic material on commercial polyimide (Kapton) films. We elucidate the effects of tuning laser processing parameters on the achieved nanoscale morphology and the resulting surface hydrophobicity or hydrophilicity. Our results show that by varying lasing power, rastering speed, laser spot size, and line-to-line gap sizes, a wide range of water contact angles are possible, i.e., from below 20 deg to above 110 deg. Combining water contact angle measurements from an optical tensiometer with LINC surface characterization using optical microscopy, electron microscopy, and Raman spectroscopy enables building the process–structur–property relationship. Our findings reveal that both the value of contact angle and the anisotropic wetting behavior of LINC on polyimide are dependent on their hierarchical surface nanostructure which ranges from isotropic nanoporous morphology to fibrous morphology. Results also show that increasing gap sizes lead to an increase in contact angles and thus an increase in the hydrophobicity of the surface. Hence, our work highlight the potential of this approach for manufacturing flexible devices with tailored surfaces.


2007 ◽  
Vol 129 (4) ◽  
pp. 809-817 ◽  
Author(s):  
Shun Wang ◽  
Yuan-zhong Hu ◽  
Wen-zhong Wang ◽  
Hui Wang

The objective of the present work is to investigate experimentally and numerically the influences of surface roughness, produced by typical machining processes, on friction performances in lubricated-point contacts. Prior to the full experimental investigation, a series of tests had been conducted to examine the experimental errors, resulting from repeated tests on the same specimen but at different tracks, with different amounts of lubricant supply, or after the sample reinstallation. Then, the effects of amplitude and texture of surface roughness on friction behavior are investigated in rotational and reciprocal-mode tests, respectively. The measured friction, averaged over the repeated tests and plotted as a function of sliding speed, shows Stribeck-type curves, which manifest the transition from full-film, mixed, to boundary lubrication. Results show that the roughness amplitude imposes a strong influence on the magnificence of friction and the route of lubrication transition. It is also observed that transverse roughness would give rise to a smaller friction coefficient than the longitudinal one under the same operating conditions. Moreover, the deterministic numerical solution of mixed lubrication has been extended to evaluate friction between rough surfaces over a wide range of lubrication regimes. The numerical simulation results are compared and agree very well with experiments.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Riaz A. Mufti ◽  
Martin Priest

With new legislation coming into place for the reduction in tail-pipe emissions, the OEMs are in constant pressure to meet these demands and have invested heavily in the development of new technologies. OEMs have asked lubricant and additive companies to contribute in meeting these new challenges by developing new products to improve fuel economy and reduce emissions. Modern low viscosity lubricants with new chemistries have been developed to improve fuel consumption. However, more work is needed to formulate compatible lubricants for new materials and engine technologies. In the field of internal combustion engines, researchers and scientists are working constantly on new technologies such as downsized engines, homogeneous charge compression ignition, the use of biofuel, new engine component materials, etc., to improve vehicle performance and emissions. Mathematical models are widely used in the automotive and lubricants industry to understand and study the effect of different lubricants and engine component materials on engine performance. Engine tests are carried out to evaluate lubricants under realistic conditions but they are expensive and time consuming. Therefore, bench tests are used to screen potential lubricant formulations so that only the most promising formulations go forward for engine testing. This reduces the expense dramatically. Engine tests do give a better picture of the lubricants performance but it does lack detailed tribological understanding as crankcase oil has to lubricant all parts of the engines, which do operate under different tribological conditions. Oil in an engine experiences all modes of lubrication regimes from boundary to hydrodynamic. The three main tribological components responsible for the frictional losses in an engine are the piston assembly, valve train, and bearings. There are two main types of frictional losses associated with these parts: shear loss and metal to metal friction. Thick oil in an engine will reduce the boundary friction but will increase shear losses whereas thin oil will reduce shear friction but will increase boundary friction and wear. This paper describes how engine operating conditions affect the distribution of power loss at component level. This study was carried out under realistic fired conditions using a single cylinder Ricardo Hydra gasoline engine. Piston assembly friction was measured using indicated mean effective pressure method and the valve train friction was measured using specially designed camshaft pulleys. Total engine friction was measured using pressure-volume diagram and brake torque measurements, whereas engine bearing friction was measured indirectly by subtracting the components from total engine friction. The tests were carried out under fired conditions and have shown changes in the distribution of component frictional losses at various engine speeds, lubricant temperatures, and type of lubricants. It was revealed that under certain engine operating conditions the difference in total engine friction loss was found to be small but major changes in the contribution at component level were observed.


Lubricants ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 70
Author(s):  
Thi D. Ta ◽  
Bach H. Tran ◽  
Kiet Tieu

Nowadays, the increasing demand to reduce energy consumption and improve process reliability requires an alternative lubricant with an effective tribological performance and environmentally friendly properties to replace traditional lubricants in hot steel manufacturing. The current work reviews recent comprehensive experimental and theoretical investigations in a new generation of alkaline-based glass lubricants, with phosphate, borate, and silicate being intensively researched. This class of lubricants showed an outstanding friction reduction, anti-wear, and anti-oxidation performance on coupled steel pairs over a wide range of temperatures (from 650 °C to 1000 °C). Each type had different tribochemical reactions within itself and with oxidized steel surfaces, which were largely determined by their chemical nature. In addition, the critical role of each structural component was also determined and corroborated by computational simulation. The theoretical studies at quantum and atomic levels reinforced our experimental findings by providing insights into the reaction mechanism using the static and dynamic simulations of the adsorption of lubricant molecules onto iron oxide surfaces. Additionally, the new reactive molecular dynamics (MD) model developed for alkali phosphate will need to be extended further to consider the realistic operating conditions of these lubricants at the atomic scale.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1794
Author(s):  
Bruno Schneider ◽  
Christian Schürch ◽  
Konstantinos Boulouchos ◽  
Stefan Herzig ◽  
Marc Hangartner ◽  
...  

A new test rig has been designed, built and commissioned, and is now jointly pursued to facilitate experimental investigations into advanced combustion processes (i.e., dual fuel, multi-mode) under turbulent conditions at high, engine-like temperature and pressure levels. Based on a standard diesel engine block, it offers much improved optical access to the in-cylinder processes due to its separated and rotated arrangement of the compression volume and combustion chamber, respectively. A fully variable pneumatic valve train and the appropriate preconditioning of the intake air allows it to represent a wide range of engine-like in-cylinder conditions regarding pressures, temperatures and turbulence levels. The modular design of the test rig facilitates easy optimizations of the combustion chamber/cylinder head design regarding different experimental requirements. The name of the new test rig, Flex-OeCoS, denotes its Flexibility regarding Optical engine Combustion diagnostics and/or the development of corresponding Sensing devices and applications. Measurements regarding in-cylinder gas pressures, temperatures and the flow field under typical operating conditions are presented to complete the description and assessment of the new test rig.


2018 ◽  
Author(s):  
Hannes Allmaier ◽  
Christoph Knauder ◽  
David E Sander ◽  
Franz M. Reich

The entanglement of an innovative measurement technique with an accurate simulation yields in total a powerful tool to investigate the friction power losses in engines under realistic operating conditions, as will be discussed in the following. While the total engine friction power losses and the friction of the valve train are measured experimentally, the friction power losses of the crank train journal bearings are calculated using simulation. The result is in an efficient and powerful determination of the individual engine subassemblies under realistic operating conditions ranging from idle to full load operation. The presented method can be used to assess the efficiency of various friction reduction measures like cylinder deactivation, (ultra)low viscosity lubricants or coatings and won in 2014 the Innovation award of Magna Logistics Europe.


Author(s):  
Moataz Abdulhafez ◽  
Angela J. McComb ◽  
Mostafa Bedewy

Abstract The growth of laser-induced nanocarbons, referred to here are LINC for short, directly on polymeric surfaces is a promising route toward surface engineering of commercial polymers. This paper aims to demonstrate how this new approach can enable achieving varied surface properties based on tuning the nanostructured morphology of the formed graphitic material on commercial polyimide (Kapton) films. We elucidate the effects of tuning laser processing parameters on the achieved nanoscale morphology and the resulting surface hydrophobicity or hydrophilicity. Our results show that by varying lasing power, rastering speed, laser spot size, and line-to-line gap sizes, a wide range of water contact angles are possible, i.e. from below 20° to above 110°. Combining water contact angle measurements from an optical tensiometer with LINC surface characterization using optical microscopy, electron microscopy, and Raman spectroscopy enables building the process-structure-property relationship. Our findings reveal that both the value of contact angle and the anisotropic wetting behavior of LINC on polyimide are dependent on their hierarchical surface nanostructure which ranges for isotropic nanoporous morphology to fibrous morphology. Results also show that increasing gap sizes lead to an increase in contact angles and thus an increase in the hydrophobicity of the surface. Hence, our work highlight the potential of this approach for manufacturing flexible devices with tailored surfaces.


Lubricants ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 105 ◽  
Author(s):  
Christoph Knauder ◽  
Hannes Allmaier ◽  
David E. Sander ◽  
Theodor Sams

In this work, friction loss investigations and comparisons of three different four-cylinder engines for passenger car applications are presented, using a recently developed combined approach. By merging extensive experimental with reliable and predictive journal bearing simulation results, a sub-assembly-resolved friction loss analysis of the piston group, crankshaft journal bearings and valve train is conducted for all three engines. The engines have been chosen individually based on their specific power output and crank train geometry. The measurement program covers a wide range of corresponding engine operation points (identical speed, load and thermal boundary conditions). In addition, the investigations are carried out for different engine media supply temperatures ranging from 70 ∘ C to 110 ∘ C for a comprehensive consideration of the friction losses at reduced lubricant viscosity. For reasons of comparability, all investigations conducted in this work have been carried out using the same modern SAE 5W30 lubricant. This is done to exclude influences from different lubricant properties which may have significant effects on the tribological behaviour of the engines’ sub-assemblies. While the diesel engine showed a friction reduction potential over the entire engine operation range when increasing the engine media supply temperatures, the gasoline engines showed a different behaviour. For the gasoline engines, disadvantages arise especially at low engine speeds. By using the developed combined approach, it was possible to assign mixed lubrication regimes at the valve train systems and at the piston groups.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


Sign in / Sign up

Export Citation Format

Share Document