scholarly journals Experimental and Numerical Analysis of a 10 MW Floating Offshore Wind Turbine in Regular Waves

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2608
Author(s):  
Hyeonjeong Ahn ◽  
Hyunkyoung Shin

Floating offshore wind turbines (FOWTs) experience fluctuations in their platforms, owing to the various wave and wind conditions. These fluctuations not only decrease the output of the wind power generation system, but also increase the fatigue load of the structure and various equipment mounted on it. Therefore, when designing FOWTs, efficient performance with respect to waves and other external conditions must be ensured. In this study, a model test was performed with a 10 MW floating offshore wind turbine. The model test was performed by scaling down a 10 MW FOWT model that was designed with reference to a 5 MW wind turbine and a semisubmersible platform by the National Renewable Energy Laboratory and the DeepCwind project. A scale ratio of 1:90 was used for the model test. The depth of the East Sea was considered as 144 m and, to match the water depth with the geometric similarity of mooring lines, mooring tables were installed. The load cases used in the model test are combined environmental conditions, which are combined uniform wind, regular waves and uniform current. Especially, Model tests with regular waves are especially necessary, because irregular waves are superpositions of regular waves with various periods. Therefore, this study aimed to understand the characteristics of the FOWTs caused by regular waves of various periods. Furthermore, in this model test, the effect of current was investigated using the current data of the East Sea. The results obtained through the model tests were the response amplitude operator (RAO) and the effective RAO for a six degrees-of-freedom motion. The results obtained from the model tests were compared with those obtained using the numerical simulation. The purpose of this paper is to predict the response of the entire system observed in model tests through simulation.

Author(s):  
H. K. Jang ◽  
H. C. Kim ◽  
M. H. Kim ◽  
K. H. Kim

Numerical tools for a single floating offshore wind turbine (FOWT) have been developed by a number of researchers, while the investigation of multi-unit floating offshore wind turbines (MUFOWT) has rarely been performed. Recently, a numerical simulator was developed by TAMU to analyze the coupled dynamics of MUFOWT including multi-rotor-floater-mooring coupled effects. In the present study, the behavior of MUFOWT in time domain is described through the comparison of two load cases in maximum operational and survival conditions. A semi-submersible floater with four 2MW wind turbines, moored by eight mooring lines is selected as an example. The combination of irregular random waves, steady currents and dynamic turbulent winds are applied as environmental loads. As a result, the global motion and kinetic responses of the system are assessed in time domain. Kane’s dynamic theory is employed to formulate the global coupled dynamic equation of the whole system. The coupling terms are carefully considered to address the interactions among multiple turbines. This newly developed tool will be helpful in the future to evaluate the performance of MUFOWT under diverse environmental scenarios. In the present study, the aerodynamic interactions among multiple turbines including wake/array effect are not considered due to the complexity and uncertainty.


2021 ◽  
Vol 11 (24) ◽  
pp. 11665
Author(s):  
Shi Liu ◽  
Yi Yang ◽  
Chao Wang ◽  
Yuangang Tu

Spar-type floating offshore wind turbines commonly vibrate excessively when under the coupling impact of wind and wave. The wind turbine vibration can be controlled by developing its mooring system. Thus, this study proposes a novel mooring system for the spar-type floating offshore wind turbine. The proposed mooring system has six mooring lines, which are divided into three groups, with two mooring lines in the same group being connected to the same fairlead. Subsequently, the effects of the included angle between the two mooring lines on the mooring-system’s performance are investigated. Then, these six mooring lines are connected to six independent fairleads for comparison. FAST is utilized to calculate wind turbine dynamic response. Wind turbine surge, pitch, and yaw movements are presented and analyzed in time and frequency domains to quantitatively evaluate the performances of the proposed mooring systems. Compared with the mooring system with six fairleads, the mooring system with three fairleads performed better. When the included angle was 40°, surge, pitch, and yaw movement amplitudes of the wind turbine reduced by 39.51%, 6.8%, and 12.34%, respectively, when under regular waves; they reduced by 56.08%, 25.00%, and 47.5%, respectively, when under irregular waves. Thus, the mooring system with three fairleads and 40° included angle is recommended.


2021 ◽  
Author(s):  
Luca Pustina ◽  
Claudio Pasquali ◽  
Jacopo Serafini ◽  
Claudio Lugni ◽  
Massimo Gennaretti

Abstract Among the renewable energy technologies, offshore wind energy is expected to provide a significant contribution for the achievement of the European Renewable Energy (RE) targets for the next future. In this framework, the increase of generated power combined with the alleviation of vibratory loads achieved by application of suitable advanced control systems can lead to a beneficial LCOE (Levelized Cost Of Energy) reduction. This paper defines a control strategy for increasing floating offshore wind turbine lifetime through the reduction of vibratory blade and hub loads. To this purpose a Proportional-Integral (PI) controller based on measured blade-root bending moment feedback provides the blade cyclic pitch to be actuated. The proportional and integral gain matrices are determined by an optimization procedure whose objective is the alleviation of the vibratory loads due to a wind distributed linearly on the rotor disc. This control synthesis process relies on a linear, state-space, reduced-order model of the floating offshore wind turbine derived from aero-hydroelastic simulations provided by the open-source tool OpenFAST. In addition to the validation of the proposed controller, the numerical investigation based on OpenFAST predictions examines also the corresponding control effort, influence on platform dynamics and expected blade lifetime extension. The outcomes show that, as a by-product of the alleviation of the vibratory out-of-plane bending moment at the blade root, significant reductions of both cumulative blade lifetime damage and sway and roll platform motion are achieved, as well. The maximum required control power is less than 1% of the generated power.


Author(s):  
Thanh Dam Pham ◽  
Junbae Kim ◽  
Byoungcheon Seo ◽  
Rupesh Kumar ◽  
Youngjae Yu ◽  
...  

Abstract A pilot floating offshore wind turbine project of Korea was proposed for installing in the East Sea of Korea. The prototype is a semisubmersible platform supporting a 750-kW wind turbine. A scaled model was tested in the basin tank of the University of Ulsan at scale ratio 1:40. The 750-kW floating offshore wind turbine was modeled by using the NREL-FAST code. Numerical results were validated by comparing with those of the test model. This paper analyzes dynamic responses and loads of the wind turbine system under extreme environmental conditions. Extreme environmental conditions based on metocean data of East Sea Korea. Extreme responses and extreme loads are important data for designing the structure of the 750 kW semi-submersible floating offshore wind turbine.


Author(s):  
Yajun Ren ◽  
Vengatesan Venugopal

Abstract The complex dynamic characteristics of Floating Offshore Wind Turbines (FOWTs) have raised wider consideration, as they are likely to experience harsher environments and higher instabilities than the bottom fixed offshore wind turbines. Safer design of a mooring system is critical for floating offshore wind turbine structures for station keeping. Failure of mooring lines may lead to further destruction, such as significant changes to the platform’s location and possible collisions with a neighbouring platform and eventually complete loss of the turbine structure may occur. The present study focuses on the dynamic responses of the National Renewable Energy Laboratory (NREL)’s OC3-Hywind spar type floating platform with a NREL offshore 5-MW baseline wind turbine under failed mooring conditions using the fully coupled numerical simulation tool FAST. The platform motions in surge, heave and pitch under multiple scenarios are calculated in time-domain. The results describing the FOWT motions in the form of response amplitude operators (RAOs) and spectral densities are presented and discussed in detail. The results indicate that the loss of the mooring system firstly leads to longdistance drift and changes in platform motions. The natural frequencies and the energy contents of the platform motion, the RAOs of the floating structures are affected by the mooring failure to different degrees.


Author(s):  
Zhi Zong ◽  
Guanqing Hu ◽  
Yichen Jiang ◽  
Li Zou

Abstract To predict the short-term motion responses of floating offshore wind turbine under extreme wind-wave excitation, a numerical model based on the two-phase flow finite volume method was developed. In this paper, uni-directional irregular waves composed of 100 cosine waves with equal frequency interval were simulated by the wave forcing technique, resulting in the measured spectrum in accordance with the target spectrum. Then, a 100-seconds wave segment containing the maximum wave height was selected for fully coupled dynamic analysis of the OC4-DeepCwind system in CFD, and the results were compared with those of FAST under the same wind and wave sea state. It was found that the motion responses of heave and pitch motion responses predicted by two methods agree well. The second-order slow drift force generated in CFD led to the difference in surge motion. The predicted sway, roll, and yaw motions by these two methods were also compared. In addition, significant differences between two methods’ predictions on mooring tension were found.


Author(s):  
Y. H. Bae ◽  
M. H. Kim ◽  
Q. Yu ◽  
J. K. Heo

Increasing numbers of FOWTs (floating offshore wind turbines) are planned in the coming years due to their high potential in massive generation of clean energy from ocean-wind. In the present study, a numerical prediction tool has been developed for the fully coupled dynamic analysis of an FOWT system in time domain including aero-loading, blade-rotor dynamics and control, mooring dynamics, and platform motions so that the influence of rotor-control dynamics on the hull-mooring performance and vice versa can be assessed. Hywind spar design with 5MW turbine is selected as an example, and two different environmental conditions, maximum operational and survival conditions, are applied for this study. The maximum operational condition means the maximum environmental condition that wind turbine can work normally, and the survival condition represents the extreme situation without any blade-turbine operation. Through this study, it is seen that the design environments for different structural components of FOWT can be different. The developed technology and numerical tool are readily applicable to the design of any future FOWTs in any combinations of irregular waves, dynamic winds, and steady currents.


Sign in / Sign up

Export Citation Format

Share Document