scholarly journals Development of Brushless Claw Pole Electrical Excitation and Combined Permanent Magnet Hybrid Excitation Generator for Vehicles

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4723 ◽  
Author(s):  
Huihui Geng ◽  
Xueyi Zhang ◽  
Yufeng Zhang ◽  
Wenjing Hu ◽  
Yulong Lei ◽  
...  

Aiming at the problems of large excitation loss and low power generation efficiency of silicon rectifier generators and the unstable output voltage of permanent magnet (PM) generators, a hybrid excitation generator (HEG) with suspended brushless claw pole electrical excitation rotor (EER) and combined magnetic pole PM rotor is proposed in the present work. With only one fractional slot winding stator, the generator adopts PM field as the main magnetic field and electrical excitation field as the auxiliary magnetic field, which not only retains the advantages of high efficiency of PM generators but also effectively reduces excitation consumption. The main structure parameters and the design method were analyzed, and a simulation analysis of no-load magnetic field distribution and flux regulation ability was carried out using finite element software to verify the rationality of the hybrid excitation parallel magnetic circuit design. Moreover, the no-load, load, regulation, and voltage regulation characteristics of the designed generator were tested, and the results show that the designed generator has a wide range of voltage regulation, which can ensure stable output voltage under variable speed and load conditions.

Author(s):  
Sevilay Cetin ◽  

In this study, high efficiency design of an on-board Electrical Vehicle (EV) battery charger is presented. The presented charger has two stages where the first stage is conventional front-end boost converter and the second stage is LLC resonant converter. The basic principles of both stage are discussed and the detailed design procedures are presented in terms of wide range output voltage regulation, wide range load condition, high efficiency and high power density. The presented design approach is tested with a prototype implemented with 2.5 kW output power at 250 V-450 V output voltage range. The peak efficiency of system is obtained as 95.53% at full load condition.


Author(s):  
Song-tong Han ◽  
Bo Zhang ◽  
Xiao-li Rong ◽  
Lei-xiang Bian ◽  
Guo-kai Zhang ◽  
...  

The ellipsoidal magnetization model has a wide range of application scenarios. For example, in aviation magnetic field prospecting, mineral prospecting, seabed prospecting, and UXO (unexploded ordnance) detection. However, because the existing ellipsoid magnetization formula is relatively complicated, the detection model is usually replaced by a dipole. Such a model increases the error probability and poses a significant challenge for subsequent imaging and pattern recognition. Based on the distribution of ellipsoid gravity potential and magnetic potential, the magnetic anomaly field distribution equation generated by the ellipsoid is deduced by changing the aspect ratio, making the ellipsoid equivalent to a sphere. The result of formula derivation shows that the two magnetic anomaly fields are consistent. This paper uses COMSOL finite element software to model UXO, ellipsoids, and spheres and analyzes magnetic anomalies. The conclusion shows that the ellipsoid model can completely replace the UXO model when the error range of 1nT is satisfied. Finally, we established two sets of ellipsoids and calculated the magnetic anomalous field distributions on different planes using deduction formulas and finite element software. We compared the experimental results and found that the relative error of the two sets of data was within [Formula: see text]‰. Error analysis found that the error distribution is standardized and conforms to the normal distribution. The above mathematical analysis and finite element simulation prove that the calculation method is simple and reliable and provides a magnetic field distribution equation for subsequent UXO inversion.


2012 ◽  
Vol 229-231 ◽  
pp. 945-948
Author(s):  
Yue Jun An ◽  
Li Min Zhou ◽  
Li Ping Xue ◽  
Yong Li

In order to further improve the power supply system reliability of low voltage high current vehicle generator, hybrid excitation is used and the permanent magnets are added between the main magnetic poles body and pole shoes. Aiming at reply the problem of limited installation space, the asymmetric pole structure, non-uniform commutating pole, single wave windings playing a role of the pressure line and oblique brush etc are investigated for improving commutation. This paper researched on the distribution of the flux line, the waveform of the air gap magnetic field, and analysis inner magnetic field at the loading by hybrid excitation and no loading by permanent magnet excitation alone respectively with the method of finite element. The results reveal that the magnetic field established by several excitation systems is still symmetric and uniform although the asymmetric structure, so it ensures the provision of suitable medium space for mechanical and electrical energy conversion. By comparing the permanent magnets excitation alone and hybrid excitation in a generator magnetic field distribution and air gap magnetic field waveform, the permanent magnet excitation and electricity excitation realized the superposition of magnetic field, and common establish main generator magnetic field. Hybrid excitation also reduces the current density of excitation coils and improves the heat dissipating performance compared with electrically excited alone. Through the performance analysis of the hybrid excitation, the output voltage waveform is very stable. The curve of auxiliary excitation current along with velocity variation provide important basis for excitation control devices and the development of control algorithm. It will help to improve the stability, reliability and security of the generator, the results can provide key technical support to the development of low-voltage high-current hybrid excitation vehicle generator.


2021 ◽  
Author(s):  
Palash K. Banerjee

In this research project, an AC Cûk voltage regulator has been proposed for maintaining constant voltage across the load during wide range of input voltage fluctuations. The proposed AC Ck voltage regulator made of practical IGBT switches has been investigated for both manual and automatic control circuit. A fraction of the output voltage is taken as the input voltage of the control circuit and produce the error signal if any changes occur in the output voltage. The modified error signal is used to make PWM signals for switching devices as per output voltage of regulator. The PWM controls the ON/OFF time (Duty cycle) of switching devices (IGBTs) of the proposed regulator. As a result the regulator is maintaining a constant voltage across the load during any change in supply voltage. The simulation waveforms and the calculated total harmonics distortion (THD) values are compared with previously studied AC Buck-Boost regulator. The observed simulated waveforms of output voltage, output current and input current and THD values have been improved in case of proposed AC Cûk voltage regulator.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Huihui Geng ◽  
Xueyi Zhang ◽  
Tao Si ◽  
Lanian Tong ◽  
Qingzhi Ma ◽  
...  

Permanent magnet generator (PMG) for vehicles has attracted more and more attention because of its high efficiency, high power density, and high reliability. However, the weak main air-gap magnetic field can affect the output performance and the normal use of electrical equipment. Aiming at the problem, this paper took the rotor magnetomotive force (MMF), the direct influencing parameter of the main air-gap magnetic field, as the research object, deduced the analytical expression of rotor MMF of the built-in radial PMG in detail, and analyzed its main influencing factors in analytical expression, including the permanent magnet steel (PMS) material, the thickness of PMS in magnetizing direction, the vertical length of the inner side of PMS, and the effective calculation length of PMS. Based on this, the rotor parameters were optimized to obtain the best values. After that, the finite element simulation and prototype test of the optimized generator were carried out. The comparative analysis results showed that the optimized rotor parameters could effectively improve the rotor MMF and optimize the output performance of the generator.


2012 ◽  
Vol 614-615 ◽  
pp. 1226-1229
Author(s):  
Dong Wei Qiao ◽  
Xiu He Wang ◽  
Chang Qing Zhu

In consideration of low power density of electric excitation claw-pole alternator (EECA) and some difficulties in magnetic field regulation of permanent magnet claw-pole alternator (PMCA), a novel hybrid excitation brushless claw-pole alternator (HEBCA) is proposed in this paper. Its structure and field control principle are described. Three dimensional finite element analysis is used to obtain the no-load magnetic field distributions and field control capability under different field currents. The result shows that the flux of the prototype machine can be adjusted over a wide range with a relatively low field current


Sign in / Sign up

Export Citation Format

Share Document