scholarly journals Investigation of the Spray Development Process of Gasoline-Biodiesel Blended Fuel Sprays in a Constant Volume Chamber

Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4819 ◽  
Author(s):  
Kihyun Kim ◽  
Ocktaeck Lim

This study investigated gasoline–biodiesel blended fuel (GB) subjected to a fuel spray development process on macroscopic and microscopic scales. The four tested fuels were neat gasoline and gasoline containing biodiesel (5%, 20%, and 40% by volume) at three different ratios. The initial spray near the nozzle revealed that the spray penetration and spray tip velocity both decreased with decreasing biodiesel blending ratio. In addition, the different spray tip velocities at the start of spraying result in different atomization regimes between the fuels. The GB fuels with a low biodiesel blending ratio were disadvantaged in terms of spray atomization due to their lower spray penetration and tip velocity. The macroscopic spray penetration changes were similar to those observed in the microscopic spray. The fuel with the lower biodiesel blending ratio had a larger spray cone angle, indicating increased radial spray dispersion.

Author(s):  
Su Han Park ◽  
Seung Hyun Yoon ◽  
Hyung Jun Kim ◽  
Chang Sik Lee

The purpose of this work is to investigate the spray-atomization, combustion and emissions characteristics of biodiesel-bioethanol (BE) and biodiesel-diesel (BD) blended fuels compared with an undiluted biodiesel fuel. For studying the overall spray characteristics, the spray tip penetration, spray cone angle were analyzed from the spray images, and droplet size and distribution were analyzed from the droplet measuring system. In addition, the combustion and exhaust emissions characteristics including the nano-size particle number and size distribution of particulate matter were studied using the direct injection diesel engine with a single cylinder. In this investigation, it revealed that BE and BD blended fuels have slightly higher spray tip penetration and wider spray cone angle due to the reduction of fuel properties such as fuel density and kinematic viscosity. Fuel droplet sizes of blended fuels were distributed in the region of the lower diameter size, compared to biodiesel fuel. It can be said that the reduced fuel viscosity and surface tension of blended fuels affect the atomization performance of biodiesel fuel. The experimental results of spray characteristics were compared with the predicted results through the numerical method by the KIVA-3V. On the other hand, BD blended fuel has a similar combustion and emission characteristics compared with an undiluted biodiesel fuel. In case of BE blended fuel, the ignition delay becomes longer and the rate of heat release becomes high. In the case of exhaust emission characteristics of BE blended fuel, it has lower soot emission, contrary to the almost same nitrogen oxides, hydrocarbon, and carbon monoxide. In the analysis of particle size and number distribution, the number and size distribution of B100 and BD20 fuels have a similar pattern and value. However, BE blended fuel has a lowest particle number in the region of nuclei mode. Moreover, the increase of the injection pressure affects the increase of the smaller size particle of BE blended fuel.


2019 ◽  
Vol 179 (4) ◽  
pp. 80-85
Author(s):  
Joanna GROCHOWALSKA

One of the main problem influencing the combustion process in the cylinder of the marine engine is an fuel spray phenomena. The parameters describing the shape of the fuel spray are named macro parameters. This article presents the research results of the macrostructure parameters of the fuel spray atomized with the marine engine injector. The research were carried out by optical visualization measurement method of Mie scattering. The diameter of nozzle injector was 0.375 mm and L/D coefficient 8.3. In these research were considered different parameters of injection opening pressures and backpressures in the constant volume chamber. Generally conlusions are: the opening pressure influence on maximum spray tip penetration, spray cone angle and influence on speed of the injected fuel. The increase of backpressure into the constant volume chamber causes the reduction of spray tip penetration and the increase of the spray cone angle.


Author(s):  
Jaclyn E. Johnson ◽  
Jeffrey D. Naber ◽  
Seong-Young Lee

Quantifying fuel spray properties including penetration, cone angle, and vaporization processes sheds light on fuel-air mixing phenomenon, which governs subsequent combustion and emissions formation in diesel engines. Accurate experimental determination of these spray properties is a challenge but imperative to validate computational fluid dynamic (CFD) models for combustion prediction. This study proposes a new threshold independent method for determination of spray cone angle when using Mie back-scattering optical diagnostics to visualize diesel sprays in an optically accessible constant volume vessel. Test conditions include the influence of charge density (17.6 and 34.9 kg/m3) at 1990 bar injection pressure, and the influence of injection pressure (990, 1370, and 1980 bar) at a charge density of 34.8 kg/m3 on diesel fuel spray formation from a multi-hole injector into nitrogen at a temperature of 100 °C. Conventional thresholding to convert an image to black and white for processing and determination of cone angle is threshold subjective. As an alternative, an image processing method was developed, which fits a Gaussian curve to the intensity distribution of the spray at radial spray cross-sections and uses the resulting parameters to define the spray edge and hence cone angle. This Gaussian curve fitting methodology is shown to provide a robust method for cone angle determination, accounting for reductions in intensity at the radial spray edge. Results are presented for non-vaporizing sprays using this Gaussian curve fitting method and compared to the conventional thresholding based method.


Author(s):  
Ramachandran Sakthikumar ◽  
Deivandren Sivakumar ◽  
B. N. Raghunandan ◽  
John T. C. Hu

Search for potential alternative jet fuels is intensified in recent years to meet stringent environmental regulations imposed to tackle degraded air quality caused by fossil fuel combustion. The present study describes atomization characteristics of blends of jatropha-derived biofuel with conventional aviation kerosene (Jet A-1) discharging into ambient atmospheric air from a dual-orifice atomizer used in aircraft engines. The biofuel blends are characterized in detail and meet current ASTM D7566 specifications. The experiments are conducted by discharging fuel spray into quiescent atmospheric air in a fuel spray booth to measure spray characteristics such as fuel discharge behavior, spray cone angle, drop size distribution and spray patternation at six different flow conditions. The characteristics of spray cone angle are obtained by capturing images of spray and the measurements of spray drop size distribution are obtained using laser diffraction particle analyzer (LDPA). A mechanical patternator system comprising 144 measurement cells is used to deduce spray patternation at different location from the injector exit. A systematic comparison on the atomization characteristics between the sprays of biofuel blends and the 100% Jet A-1 is presented. The measured spray characteristics of jatropha-derived alternative jet fuels follow the trends obtained for Jet A-1 sprays satisfactorily both in qualitative and quantitative terms.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1001-1005 ◽  
Author(s):  
Jian Wu ◽  
Yang Hua ◽  
Zhan Cheng Wang ◽  
Li Li Zhu ◽  
Wei Wei Shang

In order to better research on the spray characteristics of biodiesel and n-butanol blends, an experimental study of spray characteristics of different fuel mixtures was investigated in a constant volume vessel using high speed photograph method, and analyzed the influence of different proportions of acidic oil biodiesel and n-butanol on the macroscopic parameters of spray penetration, spray cone angle and so on. The results show that with the increase of acidic oil biodiesel ratio, the air entrainment is weakened, spray penetration gradually increases and spray cone angle decreases under the same injection pressure and back pressure. After adding n-butanol in acidic oil biodiesel and diesel mixture fuel, the surrounding air entrainment is enhanced, and spray front end widen. With the increase of mixing ratio, spray penetration increases first, then decreases. The spray cone angle increases after adding n-butanol, and decreases with the increase of mixing ratio. The results show that adding n-butanol can be used as one of the methods to improve biodiesel spray characteristics.


Author(s):  
Jaclyn E. Nesbitt ◽  
Jeffrey D. Naber ◽  
Seong-Young Lee

Quantifying fuel spray properties including penetration, cone angle, and vaporization processes sheds light on fuel-air mixing phenomenon which governs subsequent combustion and emissions formation in diesel engines. Accurate experimental determination of these spray properties is a challenge but imperative to validate computational fluid dynamic (CFD) models for combustion prediction. This study proposes a new threshold independent method for determination of spray cone angle when using Mie back-scattering optical diagnostics to visualize diesel sprays in an optically accessible constant volume vessel. Test conditions include the influence of charge density (17.6 and 34.9 kg/m3) at 1990 bar injection pressure, and the influence of injection pressure (990, 1370, and 1980 bar) at a charge density of 34.8 kg/m3 on diesel fuel spray formation from a multi-hole injector into nitrogen at a temperature of 100°C. Conventional thresholding to convert an image to black and white for processing and determination of cone angle is threshold subjective. As an alternative, an image processing method was developed which fits a Gaussian curve to the intensity distribution of the spray at radial spray cross-sections and uses the resulting parameters to define the spray edge and hence cone angle. This Gaussian curve fitting methodology is shown to provide a robust method for cone angle determination, accounting for reductions in intensity at the radial spray edge. Results are presented for non-vaporizing sprays using this Gaussian curve fitting method and compared to the conventional thresholding based method.


Author(s):  
Bolun Yi ◽  
Wei Fu ◽  
Lanbo Song ◽  
Fengyu Li ◽  
Tao Liu ◽  
...  

The aim of this study was to investigate the spray characteristics of biodiesel and n-butanol/biodiesel blended fuel. The spray tip penetration and the spray cone angle were tested and analyzed. A constant volume chamber and high-speed camera were used to observe the spray evolution and a common-rail system was employed to change the injection pressure. The results show that the spray tip penetration and the spray cone angle of biodiesel are larger than those of blended fuel in most cases. n-Butanol additive changes the relationship between angle and density ratio to a certain degree. The experimental trend lines support the penetration model proposed by Hiroyasu and Arai in terms of similar proportional relation on time after start of injection, and the empirical equations provide reasonable agreement with the experimental data of the spray tip penetration.


2014 ◽  
Vol 960-961 ◽  
pp. 1394-1399
Author(s):  
Jian Wu ◽  
Li Li Zhu ◽  
Zhan Cheng Wang ◽  
Bin Xu ◽  
Hong Ming Wang

we studied the spray characteristics of n-butanol/diesel fuel blends using a high-speed camera and schlieren system, and analyzed the effect of different fuels, ambient pressure and injection pressure conditions on the spray penetration, spray cone angle, spray area, et al. The results showed that, at the same injection pressure, as the increase of ambient pressure, the spray cone angle of the same volume of fuel increases gradually, the spray penetration and the spray area decreases; under the same ambient pressure, the spray penetration, spray cone angle and spray area increase gradually with the increasing injection pressure, but when the injection pressure increases enough, the parameters are roughly the same; and the parameters basically all increase with the adding of n-butanol.


Author(s):  
Ronith Stanly ◽  
Gopakumar Parameswaran ◽  
Bibin Sagaram

The influence of injector coking deposits on the spray field of single-hole mechanical port fuel injectors and multihole common rail direct injection (CRDi) injectors was studied using light scattering technique coupled with image processing and analysis. Instead of employing the traditional accelerated coking process to study injector spray field deterioration, in-service injectors were selected and cleaned using a commercial fuel system cleaning procedure. Variation in atomization characteristics of coked and cleaned injectors were observed based on the spatial distribution of fine, medium, and coarse droplets in the near-field region of the injector spray zone and analyzed as a function of the intensity of scattered light. The improvement in the atomization perceived by this method was compared with traditional techniques like spray cone angle measurement, speed characterization of spray jets, and weight reduction of injector nozzles and needles. It was observed that after the fuel system cleaning procedure, a reduction in the number of coarse droplets in the near-field region and an increase in the number of medium and finely sized droplets was observed, suggesting better atomization of fuel in the near field spray zone.


Sign in / Sign up

Export Citation Format

Share Document