scholarly journals Reliability Assessment of Wind-Solar PV Integrated Distribution System Using Electrical Loss Minimization Technique

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5631
Author(s):  
Sachin Kumar ◽  
Kumari Sarita ◽  
Akanksha Singh S Vardhan ◽  
Rajvikram Madurai Elavarasan ◽  
R. K. Saket ◽  
...  

This article presents the Reliability Assessment (RA) of renewable energy interfaced Electrical Distribution System (EDS) considering the electrical loss minimization (ELM). ELM aims at minimizing the detrimental effect of real power and reactive power losses in the EDS. Some techniques, including integration of Renewable Energy Source (RES), network reconfiguration, and expansion planning, have been suggested in the literature for achieving ELM. The optimal RES integration (also referred to as Distributed Generation (DG)) is one of the globally accepted techniques to achieve minimization of electrical losses. Therefore, first, the locations to accommodate these DGs are obtained by implementing two indexes, namely Index-1 for single DG and Index-2 for multiple DGs. Second, a Constriction Factor-based Particle Swarm Optimization (CF-PSO) technique is applied to obtain an optimal sizing(s) of the DGs for achieving the ELM. Third, the RA of the EDS is performed using the optimal location(s) and sizing(s) of the RESs (i.e., Solar photovoltaic (SPV) and Wind Turbine Generator (WTG)). Moreover, a Battery Storage System (BSS) is also incorporated optimally with the RESs to further achieve the ELM and to improve the system’s reliability. The result analysis is performed by considering the power output rating of WTG-GE’s V162-5.6MW (IECS), SPV-Sunpower’s SPR-P5-545-UPP, and BSS-Freqcon’s BESS-3000 (i.e., Battery Energy Storage System 3000), which are provided by the corresponding manufacturers. According to the outcomes of the study, the results are found to be coherent with those obtained using other techniques that are available in the literature. These results are considered for the RA of the EDS. RA is further analyzed considering the uncertainties in reliability data of WTG and SPV, including the failure rate and the repair time. The RA of optimally placed DGs is performed by considering the electrical loss minimization. It is inferred that the reliability of the EDS improves by contemplating suitable reliability data of optimally integrated DGs.

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
H. Lan ◽  
S. Wen ◽  
Q. Fu ◽  
D. C. Yu ◽  
L. Zhang

The consumption of conventional energy sources and environmental concerns have resulted in rapid growth in the amount of renewable energy introduced to power systems. With the help of distributed generations (DG), the improvement of power loss and voltage profile can be the salient benefits. However, studies show that improper placement and size of energy storage system (ESS) lead to undesired power loss and the risk of voltage stability, especially in the case of high renewable energy penetration. To solve the problem, this paper sets up a microgrid based on IEEE 34-bus distribution system which consists of wind power generation system, photovoltaic generation system, diesel generation system, and energy storage system associated with various types of load. Furthermore, the particle swarm optimization (PSO) algorithm is proposed in the paper to minimize the power loss and improve the system voltage profiles by optimally managing the different sorts of distributed generations under consideration of the worst condition of renewable energy production. The established IEEE 34-bus system is adopted to perform case studies. The detailed simulation results for each case clearly demonstrate the necessity of optimal management of the system operation and the effectiveness of the proposed method.


Energy storage system plays a crucial role in providing stabilization and improving power quality in isolated microgrid, especially in renewable energy based microgrid systems. Among the renewable sources, Photovoltaic (PV) based power systems are famous and increasing day by day due to its merits and advantages. Three phase fault are common in microgrid and leads to unsteady condition in the PV output power. When there is a fault in solar PV system, the photovoltaic power output decreases and results in abnormal voltage drop in the system. Efficiency and reliability of PV system is also a major issue. To overcome the issues occur due to fault in isolated PV system, it is to have Fault Ride through (FRT) capabilities. When failure occurs in PV system, FRT capability allows the system to maintain stability. FRT also allows the PV system to survive the system during the condition of fault on the system. Moreover, energy storage systems plays major role in the PV based systems. A Super Conducting Magnetic Energy Storage system (SMES)is proposed in this paper which is for providing power stabilization in isolated microgrid under fault condition. SMES can provide the real and reactive power according to the requirements of PV based power system. The proposed SMES can be a good solution for minimizing the effect on the system due to fault condition in PV system. Using MATLAB/SIMULINK, isolated PV with SMES was simulated and analysed for its performance with and without fault condition. This proposed theory is proven by an extensive simulation results.


2016 ◽  
Vol 17 (2) ◽  
pp. 173-189 ◽  
Author(s):  
Ryuto Shigenobu ◽  
Ahmad Samim Noorzad ◽  
Cirio Muarapaz ◽  
Atsushi Yona ◽  
Tomonobu Senjyu

Abstract Distributed generators (DG) and renewable energy sources have been attracting special attention in distribution systems in all over the world. Renewable energies, such as photovoltaic (PV) and wind turbine generators are considered as green energy. However, a large amount of DG penetration causes voltage deviation beyond the statutory range and reverse power flow at interconnection points in the distribution system. If excessive voltage deviation occurs, consumer’s electric devices might break and reverse power flow will also has a negative impact on the transmission system. Thus, mass interconnections of DGs has an adverse effect on both of the utility and the customer. Therefore, reactive power control method is proposed previous research by using inverters attached DGs for prevent voltage deviations. Moreover, battery energy storage system (BESS) is also proposed for resolve reverse power flow. In addition, it is possible to supply high quality power for managing DGs and BESSs. Therefore, this paper proposes a method to maintain voltage, active power, and reactive power flow at interconnection points by using cooperative controlled of PVs, house BESSs, EVs, large BESSs, and existing voltage control devices. This paper not only protect distribution system, but also attain distribution loss reduction and effectivity management of control devices. Therefore mentioned control objectives are formulated as an optimization problem that is solved by using the Particle Swarm Optimization (PSO) algorithm. Modified scheduling method is proposed in order to improve convergence probability of scheduling scheme. The effectiveness of the proposed method is verified by case studies results and by using numerical simulations in MATLAB®.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2842
Author(s):  
Kaiye Gao ◽  
Tianshi Wang ◽  
Chenjing Han ◽  
Jinhao Xie ◽  
Ye Ma ◽  
...  

Clean and renewable energy is developing to realize the sustainable utilization of energy and the harmonious development of the economy and society. Microgrids are a key technique for applying clean and renewable energy. The operation optimization of microgrids has become an important research field. This paper reviews the developments in the operation optimization of microgrids. We first summarize the system structure and provide a typical system structure, which includes an energy generation system, an energy distribution system, an energy storage system and energy end users. Then, we summarize the optimization framework for microgrid operation, which contains the optimization objective, decision variables and constraints. Next, we systematically review the optimization algorithms for microgrid operations, of which genetic algorithms and simulated annealing algorithms are the most commonly used. Lastly, a literature bibliometric analysis is provided; the results show that the operation optimization of microgrids has received increasing attention in recent years, and developing countries have shown more interest in this field than developed countries have. Finally, we highlight future research challenges for the optimization of the operation of microgrids.


2014 ◽  
Vol 986-987 ◽  
pp. 371-376 ◽  
Author(s):  
Yan Zhang ◽  
Bo Guo ◽  
Tao Zhang

This paper discusses using the battery energy storage system (BESS) to mitigate intermittency and sustain stability of distribution system integrating high penetration level of renewable energy resources (RER). The goal of the control is to have the BESS provide as much smoothing as possible, so that the RER power can be dispatchable in some kind and reliable. The effectiveness of model predictive control (MPC) based approach proposed in this paper have been tested by detail case study, also compared with the day ahead control strategy, load following strategy , and normal situation without energy storage which are usually used before. The result shows that the proposed MPC based approach is more practical, and more robust.


2017 ◽  
Vol 68 (11) ◽  
pp. 2641-2645
Author(s):  
Alexandru Ciocan ◽  
Ovidiu Mihai Balan ◽  
Mihaela Ramona Buga ◽  
Tudor Prisecaru ◽  
Mohand Tazerout

The current paper presents an energy storage system that stores the excessive energy, provided by a hybrid system of renewable energy sources, in the form of compressed air and thermal heat. Using energy storage systems together with renewable energy sources represents a major challenge that could ensure the transition to a viable economic future and a decarbonized economy. Thermodynamic calculations are conducted to investigate the performance of such systems by using Matlab simulation tools. The results indicate the values of primary and global efficiencies for various operating scenarios for the energy storage systems which use compressed air as medium storage, and shows that these could be very effective systems, proving the possibility to supply to the final user three types of energy: electricity, heat and cold function of his needs.


2021 ◽  
pp. 0309524X2110241
Author(s):  
Nindra Sekhar ◽  
Natarajan Kumaresan

To overcome the difficulties of extending the main power grid to isolated locations, this paper proposes the local installation of a combination of three renewable energy sources, namely, a wind driven DFIG, a solar PV unit, a biogas driven squirrel-cage induction generator (SCIG), and an energy storage battery system. In this configuration one bi-directional SPWM inverter at the rotor side of the DFIG controls the voltage and frequency, to maintain them constant on its stator side, which feeds the load. The PV-battery also supplies the load, through another inverter and a hysteresis controller. Appropriately adding a capacitor bank and a DSTATCOM has also been considered, to share the reactive power requirement of the system. Performance of various modes of operation of this coordinated scheme has been studied through simulation. All the results and relevant waveforms are presented and discussed to validate the successful working of the proposed system.


2021 ◽  
Vol 22 (1) ◽  
pp. 113-127
Author(s):  
Mulualem Tesfaye ◽  
Baseem Khan ◽  
Om Prakash Mahela ◽  
Hassan Haes Alhelou ◽  
Neeraj Gupta ◽  
...  

Abstract Generation of renewable energy sources and their interfacing to the main system has turn out to be most fascinating challenge. Renewable energy generation requires stable and reliable incorporation of energy to the low or medium voltage networks. This paper presents the microgrid modeling as an alternative and feasible power supply for Institute of Technology, Hawassa University, Ethiopia. This microgrid consists of a 60 kW photo voltaic (PV) and a 20 kW wind turbine (WT) system; that is linked to the electrical distribution system of the campus by a 3-phase pulse width modulation scheme based voltage source inverters (VSI) and supplying power to the university buildings. The main challenge in this work is related to the interconnection of microgrid with utility grid, using 3-phase VSI controller. The PV and WT of the microgrid are controlled in active and reactive power (PQ) control mode during grid connected operation and in voltage/frequency (V/F) control mode, when the microgrid is switched to the stand-alone operation. To demonstrate the feasibility of proposed microgrid model, MATLAB/Simulink software has been employed. The performance of fully functioning microgrid is analyzed and simulated for a number of operating conditions. Simulation results supported the usefulness of developed microgrid in both mode of operation.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1365
Author(s):  
Mukul Chankaya ◽  
Ikhlaq Hussain ◽  
Aijaz Ahmad ◽  
Irfan Khan ◽  
S.M. Muyeen

This paper presents Nyström minimum kernel risk-sensitive loss (NysMKRSL) based control of a three-phase four-wire grid-tied dual-stage PV-hybrid energy storage system, under varying conditions such as irradiation variation, unbalanced load, and abnormal grid voltage. The Voltage Source Converter (VSC) control enables the system to perform multifunctional operations such as reactive power compensation, load balancing, power balancing, and harmonics elimination while maintaining Unity Power Factor (UPF). The proposed VSC control delivers more accurate weights with fewer oscillations, hence reducing overall losses and providing better stability to the system. The seamless control with the Hybrid Energy Storage System (HESS) facilitates the system’s grid-tied and isolated operation. The HESS includes the battery, fuel cell, and ultra-capacitor to accomplish the peak shaving, managing the disturbances of sudden and prolonged nature occurring due to load unbalancing and abnormal grid voltage. The DC link voltage is regulated by tuning the PI controller gains utilizing the Salp Swarm Optimization (SSO) algorithm to stabilize the system with minimum deviation from the reference voltage, during various simulated dynamic conditions. The optimized DC bus control generates the accurate loss component of current, which further enhances the performance of the proposed VSC control. The presented system was simulated in the MATLAB 2016a environment and performed satisfactorily as per IEEE 519 standards.


Sign in / Sign up

Export Citation Format

Share Document