scholarly journals An Improved Set of Design Criteria for Slotted Liners in Steam Assisted Gravity Drainage Operation

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5685
Author(s):  
Chenxi Wang ◽  
Mohammad Haftani ◽  
Jesus David Montero Pallares ◽  
Alireza Nouri

Slotted liners are widely used in steam-assisted gravity drainage (SAGD) wells to control sand production and sustain wellbore productivity. The slotted liner can provide desirable performance when appropriately designed. A literature review indicates a limited number of studies that offer design criteria specifically for SAGD wells. Moreover, past criteria seem to neglect some key factors, which may lead to inadequate slot design. This paper proposes a set of graphical design criteria for slotted liners in SAGD production wells, using prepacked sand retention testing (SRT) data. The SRT is designed to incorporate several essential factors that are not present in the past design criteria, such as slot density, steam breakthrough, and particle size distribution (PSD). The proposed design criteria are presented graphically for normal and aggressive conditions, where the aggressive condition accounts for the potential occurrence of the steam breakthrough. It is found that the upper bound of the design window is substantially lower for the aggressive condition due to the higher sand production after the steam breakthrough. The design criteria also indicate that the slotted liner is suitable only for the formations with low fines content.

2020 ◽  
Vol 185 ◽  
pp. 106608 ◽  
Author(s):  
Chenxi Wang ◽  
Yu Pang ◽  
Mahdi Mahmoudi ◽  
Mohammad Haftani ◽  
Mahmoud Salimi ◽  
...  

SPE Journal ◽  
2016 ◽  
Vol 21 (02) ◽  
pp. 311-333 ◽  
Author(s):  
Sahar Ghannadi ◽  
Mazda Irani ◽  
Rick Chalaturnyk

Summary Steam-assisted gravity drainage is the method of choice to extract bitumen from Athabasca oil-sand reservoirs in Western Canada. Under reservoir conditions, bitumen is immobile because of high viscosity, and its typically high level of saturation limits the injectivity of steam. In current industry practice, steam is circulated within injection and production wells. Operators keep the steam circulating until mobile bitumen breaks through the producer and communication is established between the injector and the producer. The “startup” phase is a time-consuming process taking three or more months with no oil production. A variety of processes could be used to minimize the length of the startup phase, such as electromagnetic (EM) heating in either the induction (medium frequency) or radio-frequency ranges. Knowledge of the size of the hot zone formed by steam circulation and of the benefits of simultaneous EM-heating techniques increases understanding of the startup process and helps to minimize startup duration. The aim of the present work is to introduce an analytical model to predict startup duration for steam circulation with and without EM heating. Results reveal that resistive (electrothermal) heating with/without brine injection cannot be a preferable method for mobilizing the bitumen in startup phase. Induction slightly decreases startup time at frequencies smaller than 10 kHz, and at 100 kHz it can reduce startup time to less than two months.


2021 ◽  
Author(s):  
Caleb DeValve ◽  
Gilbert Kao ◽  
Stephen Morgan ◽  
Shawn Wu

Abstract Controlling downhole sand production is a well-known and often-studied issue within the oil and gas industry. The methods employed for sand management, and their ultimate cost, is greatly impacted by the amount of sand produced by the well. This paper presents an innovative, physics-based approach to predict sand production for various reservoir and completion types, explored through a case study of recent production wells in a sandstone reservoir development. Sand control may be executed through a variety of methods, for example at the reservoir-completion interface using a sand control completion, at topside facilities through sand monitoring / de-sanding equipment, or by using well operational limits to avoid downhole sand failure. Although different strategies exist for effective sand management, some capability to estimate sand production is needed to design a holistic sand management strategy. This paper presents a physics-based approach to predicting sand production on a well-by-well basis to inform the overall sand management design. The workflow integrates (1) geomechanical estimate of wellbore breakout and volume of failed sand downhole, (2) log-based prediction of the sand particle size variation along the well path, (3) modeling of sand filtration based on experimental and analytical methods for specific completion options (e.g. Open Hole Gravel Pack [OHGP] or Stand-Alone Screen [SAS]), and (4) a natural sand pack permeability prediction for SAS completions and associated well performance analysis. This paper describes the methods used in this work in more detail as well as the application to five wells in a recent sandstone reservoir development. The workflow can be described as follows: First, log-based predictions for geomechanical properties and sand Particle Size Distributions (PSDs) were generated for specific wellpaths, and the volume of failed reservoir sand and PSD characteristics were predicted along the entire wellbore length. Next, this analysis was combined with a novel filtration model to determine sand retention and production, specific to various completion types. Additionally, for a SAS completion, the PSD and volume of retained sand in the annulus was computed as the wellbore experience borehole breakout, combined with an analytical model to calculate the natural sand pack permeability and well performance. This workflow was initially applied to study five development well producers, and the results influenced a mixed design of OHGP and SAS completions for individual wells. Sand production was measured during recent well startup to validate the workflow, with excellent agreement observed between measured field data and the physics-based predictions. This innovative, physics-based approach and the associated case study demonstrate a significant advancement in the area of sand production prediction from hydrocarbon production wells. The current workflow is able to deliver improved sand prediction capabilities over rules of thumb or analog field performance, which can be used to better inform overall sand management strategies and associated business value.


Eng ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 435-453
Author(s):  
Omar Kotb ◽  
Mohammad Haftani ◽  
Alireza Nouri

Sand control screens (SCD) have been widely installed in wells producing bitumen from unconsolidated formations. The screens are typically designed using general rules-of-thumb. The sand retention testing (SRT) technique has gained attention from the industry for the custom design and performance assessment of SCD. However, the success of SRT experimentation highly depends on the accuracy of the experimental design and variables. This work examines the impact of the setup design, sample preparation, near-wellbore stress conditions, fluid flow rates, and brine chemistry on the testing results and, accordingly, screen design. The SRT experiments were carried out using the replicated samples from the McMurray Formation at Long Lake Field. The results were compared with the test results on the original reservoir samples presented in the literature. Subsequently, a parametric study was performed by changing one testing parameter at a test, gradually making the conditions more comparable to the actual wellbore conditions. The results indicate that the fluid flow rate is the most influential parameter on sand production, followed by the packing technique, stress magnitude, and brine salinity level. The paper presents a workflow for the sand control testing procedure for designing the SCD in the steam-assisted gravity drainage (SAGD) operations.


2019 ◽  
Vol 34 (01) ◽  
pp. 185-200 ◽  
Author(s):  
Z. Ouled Ameur ◽  
Viacheslau Y. Kudrashou ◽  
Hisham A. Nasr-El-Din ◽  
Jeffrey P. J. Forsyth ◽  
John J. Mahoney ◽  
...  

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 86
Author(s):  
Marwa Hannouf ◽  
Getachew Assefa ◽  
Ian Gates

The literature is replete with concerns on the environmental impact of steam-assisted gravity drainage (SAGD), but rigorous analysis of its improved environmental performance over the past 20 years remains unresolved, as well as the underlying technological reasons for this improvement. Here, we present an analysis of historical and future greenhouse gas (GHG) performance of SAGD operations in Alberta, Canada, considering for the first-time factors that affected technology deployment. Depending on the case, the results show a reduction of 1.4–24% of SAGD GHG intensity over the past 12 years. Improvements mainly arise from incremental changes adopted based on technical, environmental, socio-economic, and policy drivers. Considering these factors, we propose policy interventions to accelerate further reductions of GHG emissions. However, if similar behaviour from industry continues, anticipated GHG intensity reduction will range between 6.5–40% by 2030, leading to an intensity between 58 and 68 kgCO2e/bbl. It still remains unclear if in situ oil sands bitumen extraction will reach current conventional oil emission intensities. Thus, we suggest that the SAGD industry drastically accelerate its deployment of cleaner oil sands extraction technologies considering the policy insights proposed.


Focaal ◽  
2016 ◽  
Vol 2016 (74) ◽  
pp. 97-110 ◽  
Author(s):  
Lisa J. Krieg

Based on an ethnographic field study in a museum and an evening high school in Cologne, this paper discusses experiences of young German adults in everyday encounters with the Holocaust, which are oft en accompanied by feelings of discomfort. Considering the Holocaust as an uncanny, strange matter contributes to understanding that distance and proximity are key factors in creating uncomfortable encounters. Distance from the Holocaust reduces discomfort, but where distance cannot be created, other strategies have to be put to work. This article underlines the significance of experience in an individual’s personal relation to the past for gaining an improved understanding of Holocaust memorial culture in Germany.


Sign in / Sign up

Export Citation Format

Share Document