scholarly journals SEPIC Converter with an LC Regenerative Snubber for EV Applications

Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5765
Author(s):  
Abdalkreem Kasasbeh ◽  
Burak Kelleci ◽  
Salih Baris Ozturk ◽  
Ahmet Aksoz ◽  
Omar Hegazy

A Single-Ended Primary-Inductor Converter (SEPIC) converter with an Inductor-Capacitor (LC) regenerative snubber is proposed to reduce Electromagnetic Interference (EMI) for Electric Vehicle (EV) applications. The switching energy is transferred through a capacitor to an inductor which is coupled to SEPIC inductors. This technique reduces the number of components and also returns some of switching energy to SEPIC converter. The mathematical analysis and optimization of LC snubber with respect to number of turns is also presented. Spice simulations and experimental results are provided to verify its performance. The proposed LC regenerative snubber reduces the peak voltage by 16 V on the switching transistor during the switching transient. It is also indicated that 8 dB reduction is achieved in the EMI measurements at ringing frequency and 10 dB reduction at high frequency band.

Nanoscale ◽  
2017 ◽  
Vol 9 (37) ◽  
pp. 14192-14200 ◽  
Author(s):  
B. Aïssa ◽  
M. Nedil ◽  
J. Kroeger ◽  
M. I. Hossain ◽  
K. Mahmoud ◽  
...  

Materials offering excellent mechanical flexibility, high electrical conductivity and electromagnetic interference (EMI) attenuation with minimal thickness are in high demand, particularly if they can be easily processed into films.


2004 ◽  
Vol 34 (2) ◽  
pp. 371-398
Author(s):  
LUCIA ORLANDO

ABSTRACT: The story of the first Italian communications satellite, SIRIO, started in 1968, after the failure of the European project for the vector ELDO-PAS. The story up to the launch in 1977 involved the encumbering legacy of the San Marco satellite's success in the 1960s, political uncertainty in Italy, international economic crises of the 1970s, an overtly complex management system, and an inexperienced aerospace industry. Despite these handicaps, SIRIO won the race with its nearest competitor, the European satellite OTS, which had a similar research aim in the super high frequency band. In addition to collecting a large amount of useful data, SIRIO catalyzed the process for developing an improved organizational structure for Italian space research.


2018 ◽  
Vol 10 (12) ◽  
pp. 122 ◽  
Author(s):  
Zubin Chen ◽  
Baijun Lu ◽  
Yanzhou Zhu ◽  
Hao Lv

In this paper, a printed monopole antenna design for WiMAX/WLAN applications in cable-free self-positioning seismograph nodes is proposed. Great improvements were achieved in miniaturizing the antenna and in widening the narrow bandwidth of the high-frequency band. The antenna was fed by a microstrip gradient line and consisted of a triangle, an inverted-F shape, and an M-shaped structure, which was rotated 90° counterclockwise to form a surface-radiating patch. This structure effectively widened the operating bandwidth of the antenna. Excitation led to the generation of two impedance bands of 2.39–2.49 and 4.26–7.99 GHz for a voltage standing wave ratio of less than 2. The two impedance bandwidths were 100 MHz, i.e., 4.08% relative to the center frequency of 2.45 GHz, and 3730 MHz, i.e., 64.31% relative to the center frequency of 5.80 GHz, covering the WiMAX high-frequency band (5.25–5.85 GHz) and the WLAN band (2.4/5.2/5.8). This article describes the design details of the antenna and presents the results of both simulations and experiments that show good agreement. The proposed antenna meets the field-work requirements of cable-less seismograph nodes.


Sign in / Sign up

Export Citation Format

Share Document