scholarly journals Composite Membranes Using Hydrophilized Porous Substrates for Hydrogen Based Energy Conversion

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 6101
Author(s):  
Seohee Lim ◽  
Jin-Soo Park

Poly(tetrafluoroethylene) (PTFE) porous substrate-reinforced composite membranes for energy conversion technologies are prepared and characterized. In particular, we develop a new hydrophilic treatment method by in-situ biomimetic silicification for PTFE substrates having high porosity (60–80%) since it is difficult to impregnate ionomer into strongly hydrophobic PTFE porous substrates for the preparation of composite membranes. The thinner substrate having ~5 μm treated by the gallic acid/(3-trimethoxysilylpropyl)diethylenetriamine solution with the incubation time of 30 min shows the best hydrophilic treatment result in terms of contact angle. In addition, the composite membranes using the porous substrates show the highest proton conductivity and the lowest water uptake and swelling ratio. Membrane-electrode assemblies (MEAs) using the composite membranes (thinner and lower proton conductivity) and Nafion 212 (thicker and higher proton conductivity), which have similar areal resistance, are compared in I–V polarization curves. The I–V polarization curves of two MEAs in activation and Ohmic region are very identical. However, higher mass transport limitation is observed for Nafion 212 since the composite membrane with less thickness than Nafion 212 would result in higher back diffusion of water and mitigate cathode flooding.

e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 430-442 ◽  
Author(s):  
Rajdeep Mukherjee ◽  
Arun Kumar Mandal ◽  
Susanta Banerjee

AbstractSulfopropylated polysilsesquioxane and –COOH containing fluorinated sulfonated poly(arylene ether sulfone) composite membranes (SPAES-SS-X) have been prepared via an in situ sol–gel reaction through the solution casting technique. The composite membranes showed excellent thermal and chemical stability, compared to the pristine SPAES membrane. The uniform dispersion of the sulfonated SiOPS nanoparticles on the polymer matrix was observed from the scanning electron microscope images. Atomic force microscopy and transmission electron microscopy images indicated significantly better phase-separated morphology and connectivity of the ionic domains of the composite membranes than the pristine SPAES membrane. The composite membranes showed considerable improvement in proton conductivity and oxidative stability than the pristine copolymer membrane under similar test conditions.


2021 ◽  
Author(s):  
Artem A. Babaryk ◽  
Alaa Adawy ◽  
Inés García ◽  
Camino Trobajo ◽  
Zakariae Amghouz ◽  
...  

Although the fibrous polymorphic modification of titanium phosphate, π-Ti2O(PO4)2·2H2O (π-TiP) is known for decades, its crystal structure has remained unsolved. Herewith we report the crystal structure of π-TiP at a...


2010 ◽  
Vol 25 (11) ◽  
pp. 2063-2071 ◽  
Author(s):  
Chanho Pak ◽  
Sangkyun Kang ◽  
Yeong Suk Choi ◽  
Hyuk Chang

Polymer electrolyte fuel cells (PEFCs) are drawing attention as energy conversion devices for next generations because of their highly efficient, environmentally benign, and portable features. In the last five decades, three distinguishable innovations were achieved in terms of proton conductive membranes and electrodes: introduction of perfluorinated membranes into PEFCs, adoption of ionomers for electrodes, and increased toughness of membranes by reinforced membranes. The efficiency, cost, and durability achieved from the past three innovations are still not enough to replace competing technologies such as combustion engines. In this review, the authors would elucidate the three different methods based on nanotechnology to overcome the limits: nanoporous carbon-supported catalysts, nanocomposite membranes, and nanostructured membrane electrode assemblies, which will bring the fourth innovation to PEFCs. With the innovation, PEFCs will fulfill the goals of being clean-energy conversion devices in the major applications of stationary, portable, and vehicle markets.


Author(s):  
Tzyy-Lung Leon Yu ◽  
Shih-Hao Liu ◽  
Hsiu-Li Lin ◽  
Po-Hao Su

The PBI (poly(benzimidazole)) nano-fiber thin film with thickness of 18–30 μm is prepared by electro-spinning from a 20 wt% PBI/DMAc (N, N′-dimethyl acetamide) solution. The PBI nano-fiber thin film is then treated with a glutaraldehyde liquid for 24h at room temperature to proceed chemical crosslink reaction. The crosslink PBI nano-fiber thin film is then immersed in Nafion solutions to prepare Nafion/PBI nano-fiber composite membranes (thickness 22–34 μm). The morphology of the composite membranes is observed using a scanning electron microscope (SEM). The mechanical properties, conductivity, and unit fuel cell performance of membrane electrode assembly (MEA) of the composite membrane are investigated and compared with those of Nafion-212 membrane (thickness ∼50 μm) and Nafion/porous PTFE (poly(tetrafluoro ethylene)) composite membrane (thickness ∼22 μm). We show the present composite membrane has a similar fuel cell performance to Nafion/PTFE and a better fuel cell performance than Du Pont Nafion-212.


2021 ◽  
Author(s):  
Gandhimathi Sivasubramanian ◽  
Senthil Andavan Gurusamy Thangavelu ◽  
Berlina Maria Mahimai ◽  
Krishnan Hariharasubramanian ◽  
PARADESI DEIVANAYAGAM

Abstract Advanced polymer composite membranes were prepared from a linear sulfonated poly(ether ether ketone) (SPEEK) with bismuth cobalt zinc oxide [BCZO, (Bi2O3)0.07(CoO)0.03(ZnO)0.90] nanopowder as an inorganic additive for the application of H2-O2 fuel cell. Morphology data tend to provide evidences for the incorporation of BCZO into SPEEK polymer. Indeed, composite membrane loaded with 7.5 wt.% of BCZO was identified to uptake maximum water, while the pristine SPEEK membrane occurred to retain only 24.0 %. As such SPEEK matrix loaded with 7.5 wt.% of BCZO was found to exhibit the maximum proton conductivity of 0.030 S cm-1, whereas the pristine membrane was restricted to 0.021 S cm-1. Evidently, TGA profile of the composite membrane was measured to exhibit sufficient thermal stability to employ as electrolyte in fuel cell. The membrane electrode assembly of pristine SPEEK and SP-BCZO-7.5 wt.% membranes were fabricated and studied for their electrochemical performance. Indeed, the characteristics of newly developed composite membranes led to possess incredible feature towards fuel cell applications.


2021 ◽  
pp. 095400832110394
Author(s):  
Yan Ma ◽  
Kaixu Ren ◽  
Ziqiu Zeng ◽  
Mengna Feng ◽  
Yumin Huang

To improve the performances of sulfonated poly (arylene ether nitrile) (SPEN)–based proton exchange membranes (PEMs) in direct methanol fuel cells (DMFCs), the copper phthalocyanine grafted graphene oxide (CP-GO) was successfully prepared via in situ polymerization and subsequently incorporated into SPEN as filler to fabricate a series of SPEN/CP-GO-X (X represents for the mass ratio of CP-GO) composite membranes. The water absorption, swelling ratio, mechanical properties, proton conductivity, and methanol permeability of the membranes were systematically studied. CP-GO possesses good dispersion and compatibility with SPEN matrix, which is propitious to the formation of strong interfacial interactions with the SPEN, so as to provide more efficient transport channels for proton transfer in the composite membranes and significantly improve the proton conductivity of the membranes. Besides, the strong π–π conjugation interactions between CP-GO and SPEN matrix can make the composite membranes more compact, blocking the methanol transfer in the membranes, and significantly reducing the methanol permeability. Consequently, the SPEN/CP-GO-1 composite membrane displayed outstanding tensile strength (58 MPa at 100% RH and 25°C), excellent proton conductivity (0.178 S cm−1 at 60°C), and superior selectivity (5.552 × 105 S·cm−3·s). This study proposed a new method and strategy for the preparation of high performance PEMs.


Membranes ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 78 ◽  
Author(s):  
Muhammad Rehman Asghar ◽  
Muhammad Tuoqeer Anwar ◽  
Ahmad Naveed ◽  
Junliang Zhang

Separators with high porosity, mechanical robustness, high ion conductivity, thin structure, excellent thermal stability, high electrolyte uptake and high retention capacity is today’s burning research topic. These characteristics are not easily achieved by using single polymer separators. Inorganic nanoparticle use is one of the efforts to achieve these attributes and it has taken its place in recent research. The inorganic nanoparticles not only improve the physical characteristics of the separator but also keep it from dendrite problems, which enhance its shelf life. In this article, use of inorganic particles for lithium-ion battery membrane modification is discussed in detail and composite membranes with three main types including inorganic particle-coated composite membranes, inorganic particle-filled composite membranes and inorganic particle-filled non-woven mates are described. The possible advantages of inorganic particles application on membrane morphology, different techniques and modification methods for improving particle performance in the composite membrane, future prospects and better applications of ceramic nanoparticles and improvements in these composite membranes are also highlighted. In short, the contents of this review provide a fruitful source for further study and the development of new lithium-ion battery membranes with improved mechanical stability, chemical inertness and better electrochemical properties.


Sign in / Sign up

Export Citation Format

Share Document