scholarly journals Using Isopropanol as a Capping Agent in the Hydrothermal Liquefaction of Kraft Lignin in Near-Critical Water

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 932
Author(s):  
Anders Ahlbom ◽  
Marco Maschietti ◽  
Rudi Nielsen ◽  
Huyen Lyckeskog ◽  
Merima Hasani ◽  
...  

In this study, Kraft lignin was depolymerised by hydrothermal liquefaction in near-critical water (290–335 °C, 250 bar) using Na2CO3 as an alkaline catalyst. Isopropanol was used as a co-solvent with the objective of investigating its capping effect and capability of reducing char formation. The resulting product, which was a mixture of an aqueous liquid, containing water-soluble organic compounds, and char, had a lower sulphur content than the Kraft lignin. Two-dimensional nuclear magnetic resonance studies of the organic precipitates of the aqueous phase and the char indicated that the major lignin bonds were broken. The high molar masses of the char and the water-soluble organics, nevertheless, indicate extensive repolymerisation of the organic constituents once they have been depolymerised from the lignin. With increasing temperature, the yield of char increased, although its molar mass decreased. The addition of isopropanol increased the yield of the water-soluble organic products and decreased the yield of the char as well as the molar masses of the products, which is indicative of a capping effect.

2018 ◽  
Vol 32 (5) ◽  
pp. 5923-5932 ◽  
Author(s):  
Tallal Belkheiri ◽  
Sven-Ingvar Andersson ◽  
Cecilia Mattsson ◽  
Lars Olausson ◽  
Hans Theliander ◽  
...  

2020 ◽  
Author(s):  
MSM Wee ◽  
Ian Sims ◽  
KKT Goh ◽  
L Matia-Merino

© 2019 Elsevier Ltd A water-soluble polysaccharide (type II arabinogalactan-protein) extracted from the gum exudate of the native New Zealand puka tree (Meryta sinclairii), was characterised for its molecular, rheological and physicochemical properties. In 0.1 M NaCl, the weight average molecular weight (Mw) of puka gum is 5.9 × 106 Da with an RMS radius of 56 nm and z-average hydrodynamic radius of 79 nm. The intrinsic viscosity of the polysaccharide is 57 ml/g with a coil overlap concentration 15% w/w. Together, the shape factor, p, of 0.70 (exponent of RMS radius vs. hydrodynamic radius), Smidsrød-Haug's stiffness parameter B of 0.031 and Mark-Houwink exponent α of 0.375 indicate that the polysaccharide adopts a spherical conformation in solution, similar to gum arabic. The pKa is 1.8. The polysaccharide exhibits a Newtonian to shear-thinning behaviour from 0.2 to 25% w/w. Viscosity of the polysaccharide (1 s−1) decreases with decreasing concentration, increasing temperature, ionic strength, and at acidic pH.


2021 ◽  
Vol 7 (2) ◽  
pp. eabe3097
Author(s):  
Hongwei Sheng ◽  
Jingjing Zhou ◽  
Bo Li ◽  
Yuhang He ◽  
Xuetao Zhang ◽  
...  

It has been an outstanding challenge to achieve implantable energy modules that are mechanically soft (compatible with soft organs and tissues), have compact form factors, and are biodegradable (present for a desired time frame to power biodegradable, implantable medical electronics). Here, we present a fully biodegradable and bioabsorbable high-performance supercapacitor implant, which is lightweight and has a thin structure, mechanical flexibility, tunable degradation duration, and biocompatibility. The supercapacitor with a high areal capacitance (112.5 mF cm−2 at 1 mA cm−2) and energy density (15.64 μWh cm−2) uses two-dimensional, amorphous molybdenum oxide (MoOx) flakes as electrodes, which are grown in situ on water-soluble Mo foil using a green electrochemical strategy. Biodegradation behaviors and biocompatibility of the associated materials and the supercapacitor implant are systematically studied. Demonstrations of a supercapacitor implant that powers several electronic devices and that is completely degraded after implantation and absorbed in rat body shed light on its potential uses.


1999 ◽  
Vol 595 ◽  
Author(s):  
B. Shen ◽  
T. Someya ◽  
O. Moriwaki ◽  
Y. Arakawa

AbstractPhotoluminescence (PL) of modulation-doped Al0.22Ga0.78N/GaN heterostructures was investigated. The PL peak related to recombination between the two-dimensional electron gases (2DEG) and photoexcited holes is located at 3.448 eV at 40 K, which is 45 meV below the free excitons (FE) emission in GaN. The peak can be observed at temperatures as high as 80 K. The intensity of the 2DEG PL peak is enhanced significantly by incorporating a thin Al0.12Ga0.88N layer into the GaN layer near the heterointerface to suppress the diffusion of photoexcited holes. The energy separation of the 2DEG peak and the GaN FE emission decreases with increasing temperature. Meanwhile, the 2DEG peak energy increases with increasing excitation intensity. These results are attributed to the screening effect of electrons on the bending of the conduction band at the heterointerface, which becomes stronger when temperature or excitation intensity is increased.


2018 ◽  
Vol 67 (5) ◽  
pp. 606-614
Author(s):  
Silvana V Asmussen ◽  
Maria L Gomez ◽  
Claudia I Vallo

Sign in / Sign up

Export Citation Format

Share Document