scholarly journals Designing Tools for Energy System Scenario Making in Municipal Energy Planning

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1442 ◽  
Author(s):  
Rasmus Magni Johannsen ◽  
Poul Alberg Østergaard ◽  
David Maya-Drysdale ◽  
Louise Krog Elmegaard Mouritsen

Energy planning increasingly revolves around the use of tools for energy system modelling and analysis with a view to generating scenarios to show implications and possibilities for decision makers. Municipalities engage in the transition to renewable energy systems through the formulation of strategies and goals at a local level despite often lacking appropriate tools and resources to conduct the needed complex analyses. Tools for energy system analyses have traditionally been designed either with the scope of national energy systems or detailed project-specific analysis in mind, leaving municipal planners in a state of flux. This study aims to identify important specifications and critical design principles for future energy system modelling tools designed for municipal planners. Through a qualitative case-oriented approach, this study investigates the planning practices of four municipalities. It is found that future tools for municipal planning purposes need to combine the need for systematic analyses with concrete and implementable initiatives while balancing analytical complexity with operational simplicity.

2021 ◽  
Author(s):  
Madhura Yeligeti ◽  
Wenxuan Hu ◽  
Yvonne Scholz ◽  
Kai von Krbek

<p>Solar photovoltaic (PV) systems will foreseeably be an integral part of future energy systems. Land cover area analysis has a large influence on estimatiin of long-term solar photovoltaic potential of the world in high spatial detail. In this regard, it is often seen in contemporary works, that the suitability of various land cover categories for PV installation is considered in a yes/no binary response. While some areas like natural parks, sanctuaries, forests are usually completely exempted from PV potential calculations, other land over categories like urban settlements, bare, sparsely vegetated areas, and even cropland can principally support PV installations to varying degrees. This depends on the specific land use competition, social, economic and climatic conditions, etc. In this study, we attempt to evaluate these ‘factors of suitability’ of different land cover types for PV installations.</p><p>As a basis, the openly available global land cover datasets from the Copernicus Land Monitoring Service were used to identify major land cover types like cropland, shrubland, bare, wetlands, urban settlements, forests, moss and snow etc. For open area PV installations, with a focus on cropland, we incorporated the promising technology of ‘Agri-voltaics’ in our investigation. Different crops have shown to respond positively or negatively, so far, to growing under PV panels according to various experimental and commercial sources. Hence, we considered 18 major crops of the world (covering 85% of world cropland) individually and consequently, evaluated a weighted overall suitability factor of cropland cover for PV, for three acceptance scenarios of future.</p><p>For rooftop PV installations in urban areas, various socio-economic and geographical influences come in play. The rooftop area available and further usable for PV depends on housing patterns (roof type, housing density) which vary with climate, population density and socio-economic lifestyle. We classified global urban areas into several clusters based on combinations of these factors. For each cluster, rooftop area suitability is evaluated at a representative location using the land cover maps, the Open Street Map and specific characteristics of the cluster.</p><p>Overall, we present an interdisciplinary approach to integrate technological, social and economic aspects in land cover analysis to estimate PV potentials. While the intricacies may still be insufficient for planning small localized energy systems, this can reasonably benefit energy system modelling from a regional to international scale.</p>


Author(s):  
Luigi Bottecchia ◽  
Pietro Lubello ◽  
Pietro Zambelli ◽  
Carlo Carcasci ◽  
Lukas Kranzl

Energy system modelling is an essential practice to assist a set of heterogeneous stakeholders in the process of defining an effective and efficient energy transition. From the analysis of a set of open source energy system models, it has emerged that most models employ an approach directed at finding the optimal solution for a given set of constraints. On the contrary, a simulation model is a representation of a system that is used to reproduce and understand its behaviour under given conditions, without seeking an optimal solution. Given the lack of simulation models that are also fully open source, in this paper a new open source energy system model is presented. The developed tool, called Multi Energy Systems Simulator (MESS), is a modular, multi-node model that allows to investigate non optimal solutions by simulating the energy system. The model has been built having in mind urban level analyses. However, each node can represent larger regions allowing wider spatial scales to be be represented as well. MESS is capable of performing analysis on systems composed by multiple energy carriers (e.g. electricity, heat, fuels). In this work, the tool’s features will be presented by a comparison between MESS itself and an optimization model, in order to analyze and highlight the differences between the two approaches, the potentialities of a simulation tool and possible areas for further development.


2012 ◽  
Vol 16 (3) ◽  
pp. 703-715 ◽  
Author(s):  
Matevz Pusnik ◽  
Boris Sucic ◽  
Andreja Urbancic ◽  
Stane Merse

Strategic planning and decision making, nonetheless making energy policies and strategies, is very extensive process and has to follow multiple and often contradictory objectives. During the preparation of the new Slovenian Energy Programme proposal, complete update of the technology and sector oriented bottom up model of Reference Energy and Environmental System of Slovenia (REES-SLO) has been done. During the redevelopment of the REES-SLO model trade-off between the simulation and optimisation approach has been done, favouring presentation of relations between controls and their effects rather than the elusive optimality of results which can be misleading for small energy systems. Scenario-based planning was integrated into the MESAP (Modular Energy System Analysis and Planning) environment, allowing integration of past, present and planned (calculated) data in a comprehensive overall system. Within the paper, the main technical, economic and environmental characteristics of the Slovenian energy system model REES-SLO are described. This paper presents a new approach in modelling relatively small energy systems which goes beyond investment in particular technologies or categories of technology and allows smooth transition to low carbon economy. Presented research work confirms that transition from environment unfriendly fossil fuelled economy to sustainable and climate friendly development requires a new approach, which must be based on excellent knowledge of alternative possibilities of development and especially awareness about new opportunities in exploitation of energy efficiency and renewable energy sources.


Author(s):  
Catalina Spataru ◽  
Andreas Koch ◽  
Pierrick Bouffaron

This chapter provides a discussion of current multi-scale energy systems expressed by a multitude of data and simulation models, and how these modelling approaches can be (re)designed or combined to improve the representation of such system. It aims to address the knowledge gap in energy system modelling in order to better understand its existing and future challenges. The frontiers between operational algorithms embedded in hardware and modelling control strategies are becoming fuzzier: therefore the paradigm of modelling intelligent urban energy systems for the future has to be constantly evolving. The chapter concludes on the need to build a holistic, multi-dimensional and multi-scale framework in order to address tomorrow's urban energy challenges. Advances in multi-scale methods applied to material science, chemistry, fluid dynamics, and biology have not been transferred to the full extend to power system engineering. New tools are therefore necessary to describe dynamics of coupled energy systems with optimal control.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5724
Author(s):  
Luigi Bottecchia ◽  
Pietro Lubello ◽  
Pietro Zambelli ◽  
Carlo Carcasci ◽  
Lukas Kranzl

Energy system modelling is an essential practice to assist a set of heterogeneous stakeholders in the process of defining an effective and efficient energy transition. From the analysis of a set of open-source energy system models, it emerged that most models employ an approach directed at finding the optimal solution for a given set of constraints. On the contrary, a simulation model is a representation of a system used to reproduce and understand its behaviour under given conditions without seeking an optimal solution. In this paper, a new open-source energy system model is presented. Multi Energy Systems Simulator (MESS) is a modular, multi-energy carrier, multi-node model that allows the investigation of non optimal solutions by simulating an energy system. The model was built for urban level analyses. However, each node can represent larger regions allowing wider spatial scales to be represented as well. In this work, the tool’s features are presented through a comparison between MESS and Calliope, a state of the art optimization model, to analyse and highlight the differences between the two approaches, the potentialities of a simulation tool and possible areas for further development. The two models produced coherent results, showing differences that were tracked down to the different approaches. Based on the comparison conducted, general conclusions were drawn on the potential of simulating energy systems in terms of a more realistic description of smaller energy systems, lower computational times and increased opportunity for participatory processes in planning urban energy systems.


Author(s):  
Klaus Illum

Dr Ilium, with degrees in Civil Engineering from the Technical University of Denmark and in Energy Systems and Energy Planning from Aalborg University, has had his own consulting company, ECOConsult, since 2000. He was from 1962 for over a decade mainly occupied with the development of educational programs in computerscience alongside with studies in systems theory and cybernetics at the Danish Academy of Engineering in Copenhagen and Aalborg.Thereafter, as senior Associate Professor (Docent) at the Department of Development and Planning, Aalborg University, he was mainly engaged in the development of methods and computer models for the technological, environmental and economic analysis of alternative scenarios for the development of energy systems and agricultural production systems. He has also been engaged in studies of environmental policies and problems in Central and Eastern European countries, in particular in energy planning in Czechoslovakia/the Czech Republic, and was Programme Manager for the Nordic Training Programme for Energy Experts in the Baltic States, the PROCEED programme. In addition, Dr Ilium has developed comprehensive computer models for: numerical analysis of thermodynamic systems (power plants, cogeneration plants, integrated industrial processes,etc.); energy planning on the national, regional and local energy system level; technological/socio-economic energy systems analysis; economic assessment of alternative energy system projects; flow analysis (nutrients and energy) and economic analysis of agricultural systems. He has developed the Sustainable Energy Systems Analysis Model (SESAM), an advanced, general computer model for the analysis of scenarios for the future development of national, regional or local energy systems which has been used and is presently being used for the integrated technological, environmental, and economic analysis of present and future energy systems infrastructures in Denmark, the Czech Republic, Poland, and Germany. 


Author(s):  
Simon Hilpert ◽  
Cord Kaldemeyer ◽  
Uwe Krien ◽  
Stephan Günther ◽  
Clemens Wingenbach ◽  
...  

Energy system models have become indispensable to shape future energy systems by providing insights into different trajectories. However, sustainable systems with high shares of renewable energy are characterised by growing crosssectoral interdependencies and decentralised structures. To capture important properties of increasingly complex energy systems, sophisticated and flexible modelling environments are needed. This paper presents the Open Energy Modelling Framework (oemof) as a novel approach in energy system modelling, representation and analysis. The framework forms a structured set of tools and sub-frameworks to construct comprehensive energy system models and has been published open source under a free licence. Using a collaborative development approach and extensive documentation on different levels, the framework seeks for a maximum level of transparency. Based on a generic graph based description of energy systems it is well suited to flexibly model complex crosssectoral systems ranging from a distributed or urban to a transnational scale. This makes the framework a multi-purpose modelling environment for strategic planning of future energy systems.


2020 ◽  
Vol 197 ◽  
pp. 01003
Author(s):  
Lorenzo Mario Pastore ◽  
Gianluigi Lo Basso ◽  
Matteo Sforzini ◽  
Livio de Santoli

The growing penetration of non-programmable energy sources will largely contribute to intensify the renewable capacity firming issues. Providing a higher systems flexibility, i.e. the ability to match the supply and the demand sides as much as possible, is the main challenge to cope with, by adopting new energy planning paradigms. In this framework, different combined strategies, aiming at efficiently integrating that large amount of variable RES (VRES), have to be implemented. In the recent years, the Smart Energy Systems (SES) concept has been introduced to overcome the single-sector approach, promoting a holistic and integrated vision. By that approach, it is possible to exploit synergies between different energy sectors so as to identify the best technical options to globally reduce the primary fossil energy consumption. Starting from a quantitative and qualitative analysis of the most recent international studies dealing with the SES approach, the aim of this paper is to critically review and analyse the role of the main potential flexibility measures applied in the energy planning sector. In detail, Power-to-X and Demand Side Management (DSM) application have been considered, highlighting strengths and weaknesses of such strategies to accomplish the ambitious target of 100% renewable. From this literature review, it emerges how a single strategy adoption is not enough to guarantee the required flexibility level for the whole energy system. Indeed, the best configuration can be attained by integrating different options matching all the external constraints.


2020 ◽  
Author(s):  
Simon Moreno Leiva ◽  
Jannik Haas ◽  
Wolfgang Nowak ◽  
Tobias Junne

<p>Energy systems of the future will be highly renewable, but building the required infrastructure will require vast amounts of materials. Particularly, renewable energy technologies are more copper-intensive than conventional ones and the production of this metal is intensive in energy and emissions. Moreover, as mineral resources are being depleted, more energy is required for their extraction, with subsequent increase in environmental impacts. Highly stressed and uncertain water resources only worsen this situation.</p><p>In this work, we will first provide a comprehensive review of the limited available energy planning approaches on copper mines, including transferrable learnings from other fields. Our second contribution is to compare the influence of different geographical locations on the optimal design of energy systems to supply the world’s main copper mines. For this, we use a linear energy system optimization model, whose main inputs are hourly time series for solar irradiation and power demand, and projections for energy technology costs and ore grade decline. Our third contribution is to propose a multi-vector energy system with novel demand-side management options, specific to copper production processes, including water demand management, illustrated on a case study in Chile (where mining uses a third of the nationwide electricity).</p><p>In the first part, the review, we learned that energy demand models in copper mines have only coarse temporal and operational resolutions, and require major improvements. Also, demand-side management options remain unstudied but could promise large potentials. In general, the models applied in copper energy planning seem overly simplistic when contrasted to available energy decision tools.</p><p>For the second part, we observed that in most locations, using local photovoltaic power not only lowers future electricity costs but also compensates for increased energy demand from ore grade decline. Some regions gain a clear competitive advantage due to extremely favorable climatic conditions.</p><p>In the third and final part, regarding the demand-side management, we saw how the geography and the spatial design of the mines strongly influence the available options and their performance. Jointly planning flexible water and energy supply seems to be particularly attractive. Also, there is space for smart scheduling of maintenance of the production lines, the hardness of the rock feed, oxygen production, and the hauling (rock transport) fleet.</p><p>As an outlook,  we highlight the need for consideration of lifecycle impacts as a design goal, and to further develop demand model’s and their flexibility on the mining side. We expect that implementing these smarter approaches will help secure a cleaner material supply for the global energy transition.</p>


2020 ◽  
Vol 219 ◽  
pp. 04003
Author(s):  
Evgeny Barakhtenko ◽  
Dmitry Sokolov

Modeling of intelligent integrated energy systems, which has a complex structure, is performed using specialized software, which is caused by the computational complexity of the models, methods and algorithms used. The paper lists the requirements for software for modeling intelligent integrated energy systems and concludes that it is necessary to develop a technological platform. A methodological approach to the development of a technological platform for modeling integrated energy systems is presented. The methodological approach includes the following components: principles of building a technological platform, architecture of a technological platform, and the structure of an ontology system, a method of automated integration of software components into a software system.


Sign in / Sign up

Export Citation Format

Share Document