scholarly journals EMC of Wideband Power Sources

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1457
Author(s):  
Dariusz Brodecki ◽  
Ernest Stano ◽  
Mateusz Andrychowicz ◽  
Piotr Kaczmarek

In this paper the results of the EMC tests of the wideband power sources: the PWM-based power source and audio power amplifier are discussed. They are intended to be used to supply the measuring system developed for evaluation of the wideband transformation accuracy of instrument transformers. Therefore, it is required to detect possible interferences that may be caused by the power supply to its operation and that may cause a decrease in its accuracy. The tests concern the conducted emission in the frequencies range from 150 kHz to 30 MHz and the radiated emission in the frequencies range from 30 MHz to 1 GHz. Moreover, the level of conducted disturbances in frequencies range from 100 Hz to 5 kHz generated into the supplying current is measured and the immunity of both wideband power sources to low frequency conductive disturbances in the supplying voltage and current is tested. Then, the voltage gain error and phase shift of the output voltage are measured. The EMC tests of both power sources show lack of compliance with the requirement of the standard IEC 61326-1. However, in system application of the audio power amplifier is possible if required increased immunity to conducted emission of the measuring system is ensured.

2004 ◽  
Vol 471-472 ◽  
pp. 494-497
Author(s):  
X.G. Jiang ◽  
D.Y. Zhang

The frequency of piezoelectric transducer requires high stability and can also be continuously changed. The voltage requires smooth and stable sine wave. To the two problems, a high precision power supply for vibration cutting is designed. It divides the whole frequency band into several small bands. By means of CPLD, the sine wave is digitally fitted individually at each small band. So the sine wave can be always suitable at a wide frequency band. At the power output, OCL power amplifier is adopted. The output sine voltage becomes smooth and stable by adding voltage negative feedback to the power amplifier. The experiment results show its feasibility.


2020 ◽  
Vol 24 (5) ◽  
pp. 1041-1052
Author(s):  
Andrey Kryukov ◽  
◽  
Aleksandr Cherepanov ◽  
Irina Lyubchenko ◽  
◽  
...  

The purpose of the paper is to develop a methodology for modeling railway power supply systems equipped with a set of devices implemented on the base of smart grid technologies. The research is carried out using the Fazonord software package designed for modeling the modes of railway power supply systems in phase coordinates. The calculation model is implemented for the power supply system of a two-track section with five traction substations. The results obtained show that reliable and high-quality power supply of train traction and non-traction consumers can be ensured on the basis of the integrated use of active Smart Grid elements, such as a phase number converter, active harmonic conditioner, controlled reactive power source, and a distributed generation unit. Computer simulation allows to establish that in the absence of reactive power sources there are noticeable voltage fluctuations on 10 kV buses of non-traction consumers; the asymmetry is approaching the limit of normally acceptable values; disabling of the active filter results in the increase of the total harmonic coefficient of voltages up to 16%; if the entire complex of active devices is available, the high quality of electrical energy is achieved; the phase number converter is robust and features low sensitivity to the errors in parameter setting; voltage deviations caused by the limited variation range of reactive power in the reactive power source are short-term and do not exceed the values acceptable in practice. Thus, on the basis of Smart Grid technologies, distributed generation units can be connected directly to the traction network using a phase number conversion device formed according to the reciprocal Steinmetz circuit. Elimination of harmonic distortions created by rectifier electric locomotives is carried out by means of an active conditioner of higher harmonics. A controlled reactive power source can be used to maintain voltage levels.


2012 ◽  
Vol 1 (2) ◽  
pp. 12 ◽  
Author(s):  
L. Prevosto

The power sources used in cutting arc torches are usually poorly stabilized and have a large ripple factor. The strong oscillatory components in the voltage and arc current produce in turn, large fluctuations in the plasma quantities. Experimental observations on the dynamics of the non-equilibrium plasma inside the nozzle of a 30 A oxygen cutting torch with a 7 % ripple level of its power source are reported in this work.


2014 ◽  
Vol 945-949 ◽  
pp. 1583-1586
Author(s):  
Jia Ling Yu ◽  
Long Han Cao ◽  
Hao Mu ◽  
Jing Nan Li

The parallel connection of multiple power supplies generates output current only depended on the highest power voltage because of the unmatched precision of output voltage and imbalance output power. On account of lacking an appropriate way to solve that current problem presently, this paper presents a multiple power sources control method based on fuzzy control. According to the output voltage error and its change rate of each power source, this method modulates PWM by fuzzy control to keep each voltage conversion circuit share the same output voltage. So the output current of power multiple sources is equal to the sum of multiple power current, make the available power supply at the same time, solve the countercurrent and output current offered by the supreme power supply voltage, increase the energy utilization.


Aviation ◽  
2014 ◽  
Vol 18 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Leszek Cwojdziński ◽  
Mirosław Adamski

One of the major tasks in the process of designing future unmanned aerial vehicles is the appropriate choice of a propulsion system and a power source. Depending on the role and size of a given UAV, the following engines are used: electric, jet, turbine and piston (combustion). The following paper also analyses the faultiness of UAVs. Moreover, the most appropriate propulsion systems and power sources depending on the type and description of the mission performed by a UAV are recommended.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4362 ◽  
Author(s):  
Tri Cuong Do ◽  
Hoai Vu Anh Truong ◽  
Hoang Vu Dao ◽  
Cong Minh Ho ◽  
Xuan Dinh To ◽  
...  

Construction machines are heavy-duty equipment and a major contributor to the environmental pollution. By using only electric motors instead of an internal combustion engine, the problems of low engine efficiency and air pollution can be solved. This paper proposed a novel energy management strategy for a PEM fuel cell excavator with a supercapacitor/battery hybrid power source. The fuel cell is the main power supply for most of the excavator workload while the battery/supercapacitor is the energy storage device, which supplies additional required power and recovers energy. The whole system model was built in a co-simulation environment, which is a combination of MATLAB/Simulink and AMESim software, where the fuel cell, battery, supercapacitor model, and the energy management algorithm were developed in a Simulink environment while the excavator model was designed in an AMESim environment. In this work, the energy management strategy was designed to concurrently account for power supply performance from the hybrid power sources as well as from fuel cells, and battery lifespan. The control design was proposed to distribute the power demand optimally from the excavator to the hybrid power sources in different working conditions. The simulation results were presented to demonstrate the good performance of the system. The effectiveness of the proposed energy management strategy was validated. Compared with the conventional strategies where the task requirements cannot be achieved or system stability cannot be accomplished, the proposed algorithms perfectly satisfied the working conditions.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1849 ◽  
Author(s):  
Michal Kaczmarek ◽  
Piotr Kaczmarek

In this paper a comparison of the wideband power sources of a pulse width modulation (PWM) inverter and a power supply composed of an audio power amplifier and a two-channel arbitrary generator is discussed. Their application is to supply a step-up current transformer for generation of the distorted current required to test the transformation accuracy of the distorted currents of the inductive current transformers. The proposed equations allow to calculate the maximum rms values of higher harmonic of distorted currents for its required main harmonic component. Moreover, they also enable the calculation of the maximum rms values of the main harmonic of the distorted current for which the required higher harmonic component may be obtained. This defines the usable bandwidth of the tested power source for their specific load. During work on high inductive impedance, the maximum voltage is the limitation that determines the higher harmonic value. While for resistive loads, the maximum current and the transistor’s slew rate are the limiting factors. The usage of the compensation system for the inductive reactance of the step-up current transformer under supply significantly increased its maximum output current. Its rms value with a 10% higher harmonic component up to 5 kHz was almost 400 A instead 100 A for the PWM-based power source and about 800 A instead 200 A for the power supply system with the audio amplifier.


2021 ◽  
Vol 6 (4) ◽  
pp. 61
Author(s):  
Mikołaj Bartłomiejczyk ◽  
Marcin Połom

The current developments in onboard power source technology, in particular, traction batteries, open up new potential in trolleybus transport and also make it possible to introduce electric buses. Thus far, trolleybus transport has required the presence of overhead lines (OHL). Introducing trolleybuses with onboard batteries makes it possible to grow the zero-emissions transport network in places with limited power supply capabilities and low population density, or in places where building OHL would not be possible. This improves the efficiency of trolleybus transport and makes environmentally friendly public transport more accessible to the local citizens. Despite their obvious advantages, traction batteries can also be problematic, as the drivers may overuse them (e.g., in the event of pantograph failure), and the public transport authorities and transport companies may plan connections in an ineffective way without preparing the necessary infrastructure (the absence of slipways or automatic connection capabilities), which in turn leads to inefficient use of the OHL. The article outlines the operation of the trolleybus transport network in Gdynia. The use of traction batteries in regular connections is analysed, and the potential for electrification of the bus line, some sections of which follow the traction infrastructure, is examined.


Sign in / Sign up

Export Citation Format

Share Document