scholarly journals Adopting a Conversion Design Approach to Maximize the Energy Density of Battery Packs in Electric Vehicles

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1939
Author(s):  
Erika Pierri ◽  
Valentina Cirillo ◽  
Thomas Vietor ◽  
Marco Sorrentino

Innovative vehicle concepts have been developed in the past years in the automotive sector, including alternative drive systems such as hybrid and battery electric vehicles, so as to meet the environmental targets and cope with the increasingly stringent emissions regulations. The preferred hybridizing technology is lithium-ion battery, thanks to its high energy density. The optimal integration of battery packs in the vehicle is a challenging task when designing e-mobility concepts. Therefore, this work proposes a conceptual design procedure aimed at optimizing the sizing of hybrid and battery electric vehicles. Particularly, the influence of the cell type, physical disposition and arrangement of the electrical devices is accounted for within a conversion design framework. The optimization is focused on the trade-off between the battery pack capacity and weight. After introducing the main features of electric traction systems and their challenges compared to conventional ones, the relevant design properties of electric vehicles are analyzed. A detailed strategy, encompassing the selection of battery format and technology, battery pack design and final assessment of the proposed set-up, is presented and implemented in an exemplary application, assuming an existing commercial vehicle as the reference starting layout. Prismatic, cylindrical and pouch cells are configured aiming at achieving installed battery energy as close as possible to the reference one, while meeting the original installation space constraint. The best resulting configuration, which also guarantees similar peak power performance of the reference battery-pack, allows reducing the mass of the storage system down to 70% of its starting value.

2021 ◽  
Author(s):  
Yujing Bi ◽  
Deyu Wang

As electric vehicle market growing fast, lithium ion batteries demand is increasing rapidly. Sufficient battery materials supplies including cathode, anode, electrolyte, additives, et al. are required accordingly. Although layered cathode is welcome in high energy density batteries, it is challenging to balance the high energy density and safety beside cost. As consequence, olivine phosphate cathode is coming to the stage center again along with battery technology development. It is important and necessary to revisit the olivine phosphate cathode to understand and support the development of electric vehicles utilized lithium ion batteries. In addition, blend cathode is a good strategy to tailor and balance cathode property and performance. In this chapter, blend cathode using olivine phosphate cathode will be discussed as well as olivine phosphate cathode.


2019 ◽  
Vol 3 (1) ◽  
pp. 1-42 ◽  
Author(s):  
Jian Duan ◽  
Xuan Tang ◽  
Haifeng Dai ◽  
Ying Yang ◽  
Wangyan Wu ◽  
...  

Abstract Lithium-ion batteries (LIBs), with relatively high energy density and power density, have been considered as a vital energy source in our daily life, especially in electric vehicles. However, energy density and safety related to thermal runaways are the main concerns for their further applications. In order to deeply understand the development of high energy density and safe LIBs, we comprehensively review the safety features of LIBs and the failure mechanisms of cathodes, anodes, separators and electrolyte. The corresponding solutions for designing safer components are systematically proposed. Additionally, the in situ or operando techniques, such as microscopy and spectrum analysis, the fiber Bragg grating sensor and the gas sensor, are summarized to monitor the internal conditions of LIBs in real time. The main purpose of this review is to provide some general guidelines for the design of safe and high energy density batteries from the views of both material and cell levels. Graphic Abstract Safety of lithium-ion batteries (LIBs) with high energy density becomes more and more important in the future for EVs development. The safety issues of the LIBs are complicated, related to both materials and the cell level. To ensure the safety of LIBs, in-depth understanding of the safety features, precise design of the battery materials and real-time monitoring/detection of the cells should be systematically considered. Here, we specifically summarize the safety features of the LIBs from the aspects of their voltage and temperature tolerance, the failure mechanism of the LIB materials and corresponding improved methods. We further review the in situ or operando techniques to real-time monitor the internal conditions of LIBs.


Electronics ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1201 ◽  
Author(s):  
Neha Chawla ◽  
Meer Safa

Lithium-ion batteries are currently used for various applications since they are lightweight, stable, and flexible. With the increased demand for portable electronics and electric vehicles, it has become necessary to develop newer, smaller, and lighter batteries with increased cycle life, high energy density, and overall better battery performance. Since the sources of lithium are limited and also because of the high cost of the metal, it is necessary to find alternatives. Sodium batteries have shown great potential, and hence several researchers are working on improving the battery performance of the various sodium batteries. This paper is a brief review of the current research in sodium-sulfur and sodium-air batteries.


Author(s):  
Nikhil P

Abstract: Lithium-ion battery packs constitute an important part of Electric vehicles. The usage of Lithium-ion based chemistries as the source of energy has various advantages like high efficiency, high energy density, high specific energy, longevity among others. However, the management of lithium-ion battery packs require a Battery Management System (BMS). The BMS deals with functions like safety, prevention of abusive usage of battery pack, overcharging & over-discharging protection, cell balancing and others. One of the prominent features of the BMS is the estimation of State of charge (SOC). SOC is like a fuel gauge in automobile, it indicates how much more the battery can be used before charging it again. SOC is also required for other functions of BMS like State of Health (SOH) tracking, Range calculation, power & energy availability calculations. However, there is no means of measuring it directly (at least not on-board a vehicle) or estimating it easily. Various techniques should be used to estimate SOC indirectly. This paper starts from classical techniques that have existed since long time and reviews some of the modern & developing methods for SOC estimation. It contains a brief review about most of these SOC estimation methods, thus highlighting the methodology, advantages & disadvantages of each of these techniques. A brief review of other developing SOC estimation techniques is also provided. Keywords: State of Charge, SOC, Lithium-ion battery packs, Electric vehicles, Kalman Filter.


2019 ◽  
Vol 69 (3) ◽  
pp. 266-273 ◽  
Author(s):  
Rigvendra Kumar Vardhan ◽  
T. Selvathai ◽  
Rajaseeli Reginald ◽  
P. Sivakumar

   The pre requisite for success of electrical mobility is driven by development of battery technologies. Reliable performance of electrical mobility necessitates for high energy density battery packs. The advent of Li ion cell chemistry revolutionised the electric and hybrid vehicle advancement due to its high energy density, lighter weight and wide range of temperature performance. Higher operating voltages of the battery are achieved by configuration of the cells in series and parallel combinations. The performance of these battery packs are affected by operating temperature and imperfections in manufacturability which causes mismatches in cell impedance, cell potential and state of charge (SOC) imbalance. These performance issues are overcome by cell and battery balancing techniques. In this paper, a dynamic battery pack balancing circuit by using multi inductor with SOC based logic controller for both cell and battery balancing are presented. The battery pack balancing performances during static, charging, discharging conditions are analysed.


2015 ◽  
Vol 1094 ◽  
pp. 209-213
Author(s):  
Hui Feng Li ◽  
Gen Ban Sun ◽  
Qiang Wang ◽  
Lin Na Sun ◽  
Fun Bin Jiang

Safety is the key-feature of high energy density lithium-ion batteries and thermal stability of the electrolytes is crucial. In this work, the thermal and flammability properties of mixed electrolytes based on the conventional ethylene carbonate (EC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) (1:1:1 v/v/v), 1M LiPF6 and the hydrophobic ionic liquid (IL) N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (Pp13TFSI) have been investigated. The mixed electrolyte is observed to be nonflammable at the Pp13TFSI contents of more than 40 vol.%. And physical and electrochemical characteristics of high energy density lithium ion batteries based on Li [Li0.2Mn0.54Ni0.13Co0.13]O2 as the cathode and artificial graphite as the anode with mixed electrolyte are also investigated. The cell of graphite/ Li [Li0.2Mn0.54Ni0.13Co0.13]O2 with 1 mol/L LiPF6/40%Pp13TFSI + 60% (EC+DMC+EMC) (1/1/1,v/v/v) electrolyte shows first charge capacity of 313.8 mAh g-1 and discharge capacity of 201.8 mAh g-1, respectively. Moreover, the nail penetration tests are carried out on the charged lithium-ion cells after formation, and the results show no explosion, ignition, or thermal runaway. These results suggest that the IL has potential to improve the safety of lithium ion batteries and can be used to fabricate the high energy density lithium ion batteries for electric vehicles and hybrid electric vehicles.


Author(s):  
Qiqi Tao ◽  
Liguang Wang ◽  
Caihong Shi ◽  
Jun Li ◽  
Guang Chen ◽  
...  

The development of electric and hybrid electric vehicles has emerged as one of the most promising strategies for solving the global shortage of fossil energy problem.


2013 ◽  
Vol 28 (11) ◽  
pp. 1207-1212 ◽  
Author(s):  
Jian-Wen LI ◽  
Ai-Jun ZHOU ◽  
Xing-Quan LIU ◽  
Jing-Ze LI

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Renwei Lu ◽  
Xiaolong Ren ◽  
Chong Wang ◽  
Changzhen Zhan ◽  
Ding Nan ◽  
...  

Lithium-ion hybrid capacitors (LICs) are regarded as one of the most promising next generation energy storage devices. Commercial activated carbon materials with low cost and excellent cycling stability are widely used as cathode materials for LICs, however, their low energy density remains a significant challenge for the practical applications of LICs. Herein, Na0.76V6O15 nanobelts (NaVO) were prepared and combined with commercial activated carbon YP50D to form hybrid cathode materials. Credit to the synergism of its capacitive effect and diffusion-controlled faradaic effect, NaVO/C hybrid cathode displays both superior cyclability and enhanced capacity. LICs were assembled with the as-prepared NaVO/C hybrid cathode and artificial graphite anode which was pre-lithiated. Furthermore, 10-NaVO/C//AG LIC delivers a high energy density of 118.9 Wh kg−1 at a power density of 220.6 W kg−1 and retains 43.7 Wh kg−1 even at a high power density of 21,793.0 W kg−1. The LIC can also maintain long-term cycling stability with capacitance retention of approximately 70% after 5000 cycles at 1 A g−1. Accordingly, hybrid cathodes composed of commercial activated carbon and a small amount of high energy battery-type materials are expected to be a candidate for low-cost advanced LICs with both high energy density and power density.


Sign in / Sign up

Export Citation Format

Share Document