scholarly journals Voltage Regulation For Residential Prosumers Using a Set of Scalable Power Storage

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3288
Author(s):  
Igor Torres ◽  
Daniel Farias ◽  
Andre Aquino ◽  
Chigueru Tiba

Among the electrical problems observed from the solar irradiation variability, the electrical energy quality and the energetic dispatch guarantee stand out. The great revolution in batteries technologies has fostered its usage with the installation of photovoltaic system (PVS). This work presents a proposition for voltage regulation for residential prosumers using a set of scalable power batteries in passive mode, operating as a consumer device. The mitigation strategy makes decisions acting directly on the demand, for a storage bank, and the power of the storage element is selected in consequence of the results obtained from the power flow calculation step combined with the prediction of the solar radiation calculated by a recurrent neural network Long Short-Term Memory (LSTM) type. The results from the solar radiation predictions are used as subsidies to estimate, the state of the power grid, solving the power flow and evidencing the values of the electrical voltages 1-min enabling the entry of the storage device. In this stage, the OpenDSS (Open distribution system simulator) software is used, to perform the complete modeling of the power grid where the study will be developed, as well as simulating the effect of the overvoltages mitigation system. The clear sky day stored 9111 Wh/day of electricity to mitigate overvoltages at the supply point; when compared to other days, the clear sky day needed to store less electricity. On days of high variability, the energy stored to regulate overvoltages was 84% more compared to a clear day. In order to maintain a constant state of charge (SoC), it is necessary that the capacity of the battery bank be increased to meet the condition of maximum accumulated energy. Regarding the total loading of the storage system, the days of low variability consumed approximately 12% of the available capacity of the battery, considering the SoC of 70% of the capacity of each power level.

Author(s):  
Amaury De Souza ◽  
Flavio Aristone

Para o presente trabalho foi desenvolvido um estudo de um sistema fotovoltaico, com armazenamento de energia, na Universidade Federal de Mato Grosso do Sul, Campus Campo Grande, durante o ano de 2014. Foi avaliada a eficiência de painéis fotovoltaicos em função dos valores da componente de radiação solar global no plano horizontal de incidência; das temperaturas ambiente e de operação do painel; e da tensão e corrente do sistema fotovoltaico. Os resultados mostram que a eficiência média mensal oscilou entre 8,65 e 9,17%, com média anual de 8,84%. O módulo apresentou eficiência média 50% inferior aos valores propostos pelos fabricantes.Palavras-chave: Eficiência Fotovoltaica Celular; Radiação Solar; Conversão da Irradiação Solar; Temperatura da Célula Fotovoltaica.STUDY OF ENERGETIC EFFICIENCY OF PHOTOVOLTAIC CELLS AS A FUNCTION OF SOLAR RADIATION IN BRAZIL’S MIDWEST REGIONABSTRACTIn this paper, we developed a study of a photovoltaic system (PV) with energy storage installed at the Federal University of Mato Grosso do Sul, campus of Campo Grande, during 2014. It has been evaluated the efficiency of photovoltaic panels according to the data of the solar radiation components in the horizontal plane of incidence, the local and operating temperatures, and the current - voltage response of the PV system. The results show that the average monthly efficiency oscillated between 8.65% and 9.17%, with an annual average of 8.84%. The modules showed an average efficiency that is 50% smaller compared to the values provided by manufacturers.Keywords: Photovoltaic Cell Efficiency; Solar Irradiation; Conversion of Solar Irradiation; Photovoltaic Cell Temperature.ESTUDIO DE LA EFICIENCIA ENERGÉTICA DE CÉLULAS FOTOVOLTAICAS COMO FUNCIÓN DE LA RADIACIÓN SOLAR EN LA REGIÓN CENTRAL DE BRASILRESUMEN En el presente trabajo se ha desarrollado un estudio para un sistema fotovoltaico con almacenamiento de energía, durante el año 2014 en el campus de Campo Grande de la Universidad Federal de Mato Grosso do Sul. Se evaluó la eficiencia de paneles fotovoltaicos en función de los valores de la componente de radiación solar global en el plano horizontal de incidencia; de las temperaturas ambiente y de funcionamiento del panel; y de la tensión y corriente generada en el sistema fotovoltaico. Los resultados muestran que la eficiencia media mensual osciló entre 8.65% y 9.17%, con una media anual de 8.84%. El módulo ha presentado una eficiencia media 50% inferior a los valores propuestos por los fabricantes.Palabras clave: Eficiencia de Células Fotovoltaicas; Irradiación Solar; Conversión de Irradiación Solar; Temperatura de las Células Fotovoltaicas.


2021 ◽  
Vol 14 (7) ◽  
Author(s):  
Sylwia Wciślik ◽  
Dagmara Kotrys-Działak

AbstractNowadays, one of the basic requirements for thermally upgraded buildings involves limitation in CO2 emission even by over 90%. To fulfil these criteria, it is necessary to use alternative energy sources and photovoltaics constitutes a reasonable option for this. This paper addresses an analysis of the efficiency and profitability of a photovoltaic system located in the geometric center of Europe-Poland, where the intensity of solar irradiation is not very high compared to other European countries. The difference of total solar radiation density between Poland and Malta is 49.2%, from analysis based on SolarGIS base. The PV Lighthouse calculator was used for global power density and photon current examination for a Polish city and locations of the highest and the lowest solar radiation values, Malta and Finland, respectively. This case study concerns a thermally upgraded building; a gas boiler was replaced by a heat pump supported by an off-grid PV system. To achieve a reduction in CO2 emission of 90%, it is necessary to install 182 PV cells, which generates high investment costs. An investment is entirely profitable with 70% of funding with Simple Pay Back Time, SPBT~7 years although Net Present Value, NPV>0; Internal Rate of Return, IRR=10.6%.


Author(s):  
D. Vidhyalakshmi ◽  
K. Balaji

<p>A transformer less bidirectional inverter fed grid-connected system has implemented and function as both forward and reverse power flow by battery and photovoltaic system. In dc distributed system has utilized the renewable energy such as PV, wind, battery and fuel system. In conventional method the dc bus regulation by using the one line cycle regulation method and one-sixth line cycle regulation. In proposed method utilize both converter and inverter operates bidirectional direction and utilize both solar and PV source. The solar energy had less cost, pollution less energy generation and fed into the bidirectional converter. The PI-based control method is used to operate both forward and reverse direction. The model predictive control method is used in the bidirectional inverter for control the current and voltage of the grid-connected system. The power flow control in the distribution system by the constant power loads such as dc/dc converter because conduct the negative dynamic impedance. The three-phase bidirectional inverter is designed and implemented in MATLAB/Simulink environment.</p>


Author(s):  
Mahesh Shende

In Modern Power System power quality is the main issue of the power companies. Improvement of power quality in distribution system using photovoltaic based DPFC is declared in this paper. Flexible AC Transmission System (FACTS) device which is known as distributed power flow controller (DPFC)is used. DPFC is derived from UPFC by eliminating common dc link between series and shunt converter. Unified power flow controller (UPFC) is widely used and control all parameters of the system. The UPFC handle the current and voltage with high rating; therefore, the cost of system is high. Therefore, distributed power flow controller (DPFC) is used due to high control capability, high Reliability & low cost. DPFC also measures the transmission angle, line impedance and bus voltage. In distribution system problems occur like voltage sag/swell, Harmonics etc. Photovoltaic system is used as source for DPFC.


2020 ◽  
Vol 6 (9) ◽  
pp. 11-14
Author(s):  
MD Shahabuddin Alam ◽  
Jyoti Bansal

Improving the quality of energy in distributed generation is a rapidly growing, challenging, and interesting area of modern times. In recent decades, a large number of techniques have been developed to improve energy quality. This article attempts to comprehensively examine a wide range of methods for improving power quality in distributed generation. This includes the use of active filters, Dynamic Voltage Restorer, DSTATCOM, reactive power compensation techniques, and an unmodified power quality conditioner. In this test, all of these methods are examined with power quality parameters such as reverse power flow, voltage stability, and current harmonics. This document describes energy quality problems and possible effects on the distribution system due to a grid-connected photovoltaic system.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 3011
Author(s):  
Chi-Thang Phan-Tan ◽  
Martin Hill

High penetration levels of renewable energy generation in the distribution network require voltage regulation to avoid excessive voltage at generating nodes. To effectively control the network and optimize network hosting capacity, the distribution system operator must have an efficient model for power flow analysis. This paper presents the formulas and steps to express the power flow analysis equations of an unbalanced 3-phase network in matrix form suited to programmed solutions. A benchmark MATLAB/Simulink network with unbalanced distribution lines, photovoltaic inverters, and loads is built to verify the matrix model. To demonstrate the application of the model, the control of reverse energy flow from the photovoltaic inverters to keep the voltage in the network below the regulated level is simulated. Two decentralized control algorithms are applied in the network, including an on/off and a multi-objective constrained optimization controller. The detailed construction of the optimization problem for the 3-phase network in matrix form, which is consistent with the power flow calculation, is described. Simulation with the control methods over a day shows that the total active power of the on/off and optimized controllers deliver 41.92% and 99.39% of the available solar power, respectively, while maintaining the network node voltages within limits.


2013 ◽  
Vol 748 ◽  
pp. 477-484 ◽  
Author(s):  
Peng Li ◽  
Tao Li ◽  
Jia Ming Li ◽  
Duo Xu ◽  
Ru Yu Shi

The distributed generation (DG) may lead to a great impact on the reactive power flow, feeder voltage profile and the means of voltage regulation when integrated into a typical distribution system. Therefore, there is possibility that the customers voltage violate the permissible limits. In order to regulate the voltage of the distribution system with DG, local voltage and reactive power control (VQC) based on fuzzy control theory is adopted in substation and the Static Var Compensator (SVC) is installed in the appropriate node in this paper, and the fuzzy controller of VQC has been designed at the same time. A simplified model of a real 10kV radial distribution system has been simulated in MATLAB to illustrate the use of the voltage regulation method, and the simulation results show that the proposed method can regulate the line voltage of distribution system with DG within the regulated voltage ranges.


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2576 ◽  
Author(s):  
Tiago Elias Castelo de Oliveira ◽  
Math Bollen ◽  
Paulo Fernando Ribeiro ◽  
Pedro M. S. de Carvalho ◽  
Antônio C. Zambroni ◽  
...  

The hosting capacity approach is presented as a planning, improving, and communication tool for electrical distribution systems operating under specific uncertainties, such as power quality issues, power stabilities, and reliability, among others. In other words, it is an important technique, when renewable sources are present, to answer the amount of power that is possible to supply to the system without trespassing power performance limits. However, the power flow in a distribution system, for instance, can change throughout time due to the penetration of distributed generation, as well as load consumption. Based on the dynamic nature existing in distribution grids nowadays, it is important to highlight that the hosting capacity should not be calculated in a specifically chosen time only, but must be analyzed throughout a period of time. Thus, this paper introduces an extended concept of hosting capacity in relation to an integrated impact of harmonic voltage distortion and voltage rise as a function of time for daily, weekly, monthly, or even yearly periods. This extended concept is named as Dynamic Hosting Capacity (DHC(t)). General aspects of DHC(t) are demonstrated via measured data on a photovoltaic system (PV) connected at a low-voltage (LV) side of a university building.


Sign in / Sign up

Export Citation Format

Share Document