scholarly journals Crushing of Double-Walled Corrugated Board and Its Influence on the Load Capacity of Various Boxes

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4321
Author(s):  
Tomasz Gajewski ◽  
Tomasz Garbowski ◽  
Natalia Staszak ◽  
Małgorzata Kuca

As long as non-contact digital printing remains an uncommon standard in the corrugated packaging industry, corrugated board crushing remains a real issue that affects the load capacity of boxes. Crushing mainly occurs during the converting of corrugated board (e.g., analog flexographic printing or laminating) and is a process that cannot be avoided. However, as this study shows, it can be controlled. In this work, extended laboratory tests were carried out on the crushing of double-walled corrugated board. The influence of fully controlled crushing (with a precision of ±10 μm) in the range from 10 to 70% on different laboratory measurements was checked. The typical mechanical tests—i.e., edge crush test, four-point bending test, shear stiffness test, torsional stiffness test, etc.—were performed on reference and crushed specimens. The residual thickness reduction of the crushed samples was also controlled. All empirical observations and performed measurements were the basis for building an analytical model of crushed corrugated board. The proven and verified model was then used to study the crushing effect of the selected corrugated board on the efficiency of simple packages with various dimensions. The proposed measurement technique was successfully used to precisely estimate and thus control the crushing of corrugated board, while the proposed numerical and analytical techniques was used to estimate the load capacity of corrugated board packaging. A good correlation between the measured reduced stiffness of the corrugated cardboard and the proposed analytical predictive models was obtained.

Author(s):  
Tomasz Gajewski ◽  
Tomasz Garbowski ◽  
Natalia Staszak ◽  
Małgorzata Kuca

As long as the non-contact digital printing is not a common standard in the corrugated packaging industry, corrugated board crushing is a real issue that affects the load capacity of the boxes. Crushing mainly occurs during the converting of corrugated board (e.g. analog flexographic printing or laminating) and is a process that cannot be avoided. However, as show in this study, it can be controlled. In this work, extended laboratory tests were carried out on the crushing of double-walled corrugated board. The influence of fully controlled crushing (with a precision: ±10 μm) in the range from 10 to 70 % on different laboratory measurements was checked. Most of the typical mechanical tests were performed e.g. edge crush test, four-point bending test, shear stiffness test, torsional stiffness test, etc. on reference and crushed specimens. The residual thickness reduction of the crushed samples was also controlled. All empirical observations and performed measurements were the basis for building an analytical model of crushed corrugated board. The proven and verified model was then used to study the crushing effect of the selected corrugated board on the efficiency of simple packages with various dimensions.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3786
Author(s):  
Tomasz Garbowski ◽  
Anna Knitter-Piątkowska ◽  
Damian Mrówczyński

The corrugated board packaging industry is increasingly using advanced numerical tools to design and estimate the load capacity of its products. This is why numerical analyses are becoming a common standard in this branch of manufacturing. Such trends cause either the use of advanced computational models that take into account the full 3D geometry of the flat and wavy layers of corrugated board, or the use of homogenization techniques to simplify the numerical model. The article presents theoretical considerations that extend the numerical homogenization technique already presented in our previous work. The proposed here homogenization procedure also takes into account the creasing and/or perforation of corrugated board (i.e., processes that undoubtedly weaken the stiffness and strength of the corrugated board locally). However, it is not always easy to estimate how exactly these processes affect the bending or torsional stiffness. What is known for sure is that the degradation of stiffness depends, among other things, on the type of cut, its shape, the depth of creasing as well as their position or direction in relation to the corrugation direction. The method proposed here can be successfully applied to model smeared degradation in a finite element or to define degraded interface stiffnesses on a crease line or a perforation line.


Author(s):  
Tomasz Garbowski ◽  
Anna Knitter-Piątkowska ◽  
Damian Mrówczyński

The corrugated board packaging industry is increasingly using advanced numerical tools to design and estimate the load capacity of its products. That is why numerical analyzes are becoming a common standard in this branch of manufacturing. Such trend causes either the use of advanced computational models that take into account the full 3D geometry of the flat and wavy layers of corrugated board, or the use of homogenization techniques to simplify the numerical model. The article presents theoretical considerations that extend the numerical homogenization technique already presented in our previous work. The proposed here homogenization procedure also takes into account the creasing and / or perforation of corrugated board, i.e. processes that undoubtedly weaken the stiffness and strength of the corrugated board locally. However, it is not always easy to estimate how exactly these processes affect the bending or torsional stiffness. What is known for sure is that the degradation of stiffness depends, among other things, on the type of cut, its shape, the depth of creasing, as well as their position or direction in relation to the corrugation direction. The method proposed here can be successfully applied to model smeared degradation in a finite element or to define degraded interface stiffnesses on a crease line or a perforation line.


Author(s):  
Tomasz Garbowski ◽  
Tomasz Gajewski ◽  
Damian Mrówczyński ◽  
Radosław Jędrzejczak

Corrugated cardboard is an ecological material, mainly because, in addition to virgin cellulose fibers also the fibers recovered during recycling process are used in its production. However, the use of recycled fibers causes slight deterioration of the mechanical properties of the corrugated board. In addition, converting processes such as printing, die-cutting, lamination, etc. cause micro-damage in the corrugated cardboard layers. In this work, the focus is precisely on the crushing of corrugated cardboard. A series of laboratory experiments were conducted, in which the different types of single-walled corrugated cardboards were pressed in a fully controlled manner to check the impact of the crush on the basic material parameters. The amount of crushing (with a precision of 10 micrometers) was controlled by a precise FEMat device, for crushing the corrugated board in the range from 10 to 70 % of its original thickness. In this study, the influence of crushing on bending, twisting and shear stiffness as well as a residual thickness and edge crush resistance of corrugated board was investigated. Then, a procedure based on a numerical homogenization, taking into account a partial delamination in the corrugated layers to determine the degraded material stiffness was proposed. Finally, using the empirical-numerical method, a simplified calculation model of corrugated cardboard was derived, which satisfactorily reflects the experimental results.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3203
Author(s):  
Tomasz Garbowski ◽  
Tomasz Gajewski ◽  
Damian Mrówczyński ◽  
Radosław Jędrzejczak

Corrugated cardboard is an ecological material, mainly because, in addition to virgin cellulose fibers also the fibers recovered during recycling process are used in its production. However, the use of recycled fibers causes slight deterioration of the mechanical properties of the corrugated board. In addition, converting processes such as printing, die-cutting, lamination, etc. cause micro-damage in the corrugated cardboard layers. In this work, the focus is precisely on the crushing of corrugated cardboard. A series of laboratory experiments were conducted, in which the different types of single-walled corrugated cardboards were pressed in a fully controlled manner to check the impact of the crush on the basic material parameters. The amount of crushing (with a precision of 10 micrometers) was controlled by a precise FEMat device, for crushing the corrugated board in the range from 10 to 70% of its original thickness. In this study, the influence of crushing on bending, twisting and shear stiffness as well as a residual thickness and edge crush resistance of corrugated board was investigated. Then, a procedure based on a numerical homogenization, taking into account a partial delamination in the corrugated layers to determine the degraded material stiffness was proposed. Finally, using the empirical-numerical method, a simplified calculation model of corrugated cardboard was derived, which satisfactorily reflects the experimental results.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 663
Author(s):  
Tomasz Garbowski ◽  
Anna Knitter-Piątkowska

Bending stiffness (BS) is one of the two most important mechanical parameters of corrugated board. The second is edge crush resistance (ECT). Both are used in many analytical formulas to assess the load capacity of corrugated cardboard packaging. Therefore, the correct determination of bending stiffness is crucial in the design of corrugated board structures. This paper focuses on the analytical determination of BS based on the known parameters of the constituent papers and the geometry of the corrugated layers. The work analyzes in detail the dependence of the bending stiffness of an asymmetric, five-layer corrugated cardboard on the sample arrangement. A specimen bent so that the layers on the lower wave side are compressed has approximately 10% higher stiffness value. This is due to imperfections, which are particularly important in the case of compression of very thin liners. The study showed that imperfection at the level of a few microns causes noticeable drops in bending stiffness. The method has also been validated by means of experimental data from the literature and simple numerical finite element model (FEM). The obtained compliance of the computational model with the experimental model is very satisfactory. The work also included a critical discussion of the already published data and observations of other scientists in the field.


2010 ◽  
Vol 443 ◽  
pp. 195-200
Author(s):  
Aleš Petek ◽  
Karl Kuzman ◽  
Franc Resman ◽  
Boris Jerman ◽  
Viktor Zaletelj

The technologies for low-quantity production of sheet metal components and parts are applied mostly for thin single metal sheets. However, such technologies could also be applied as an additional procedure in multi-layer construction element production. Such individually produced construction elements must correspond to required standards, which are usually applied in serial production. Due to the immense testing work expected by custom-made production, it is reasonable to develop a methodology that would be capable of predicting the required results of an individually designed and produced construction block quickly, effectively and with minimal costs. In this investigation, a method of predicting the load capacity behavior of individual construction elements performed by incremental forming as an additional technology in multi-layer construction element production is presented. Special attention is dedicated to the definition of finite element model of a standardized four-point bending test and its correlation to real experimental results.


2011 ◽  
Vol 21 (2) ◽  
pp. 293-305 ◽  
Author(s):  
Lucia Hegedűsová ◽  
Ladislav Ceniga ◽  
Ján Dusza

The article deals with the determination of strength of monolithic ceramic materials by mechanical tests, in bending and contact modes, simulated by a four-point bending test and single-cycle contact test using rollers or spheres, respectively. In general, the determination of strength of ceramic materials results from statistical methods, usually represented by the Weibull analysis comprising of the determination of the characteristic strength σ0 and the Weibull modulus m. Accordingly, the characteristic strength σ0,bend and σ0,cont as well as the Weibull moduli mbend and mcont, related to the four-point bending test and the single-cycle contact test using rollers, are determined, respectively. Additionally, the comparison of numerical results of σ0,bend/ σ0,cont, mbend/ mcont confirms the validity of the Fett's theory. Along with this verification and the Weibull analysis for mechanical loading by spheres, a microstructural analysis of strength-degrading defects as fraction origins is performed for the bending and contact modes which induce different types of crack. Finally, the determination of mechanical loading causing material failure and an analysis of parameters of the cracks is also presented. The mechanical tests were applied to monolithic Si3N4 and SiC ceramic materials.


2017 ◽  
Vol 27 (4) ◽  
pp. 105-120 ◽  
Author(s):  
Konrad Rodacki

Abstract This article discusses the issue of composite timber-glass I-beams, which are an interesting alternative for load-bearing beams of ceilings and roofs. The reasoning behind the use of timber-glass I-beams is the combination of the best features of both materials - this enables the creation of particularly safe beams with regard to structural stability and post-breakage load capacity. Due to the significant differences between the bonding surfaces of timber and glass, a study on the adhesion of various adhesives to both surfaces is presented at the beginning of the paper. After examination, two adhesives were selected for offering the best performance when used with composite beams. The beams were investigated using a four-point bending test under quasi-static loading.


2012 ◽  
Vol 31 (2) ◽  
Author(s):  
Lucia Hegedűsov’a ◽  
Ladislav Ceniga

AbstractThe paper deals with the determination of strength of laminar ceramics by mechanical tests in bending and contact modes. The bending and contact modes are simulated by the four-point bending test, and by single-cycle contact test using rollers or spheres, respectively. In general, the determination of strength of ceramic materials results from statistical methods which are usually represented by the Weibull analysis. The Weibull analysis comprises the determination of the characteristic strength


Sign in / Sign up

Export Citation Format

Share Document