scholarly journals Crushing of Single-Walled Corrugated Board during Converting: Experimental and Numerical Study

Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3203
Author(s):  
Tomasz Garbowski ◽  
Tomasz Gajewski ◽  
Damian Mrówczyński ◽  
Radosław Jędrzejczak

Corrugated cardboard is an ecological material, mainly because, in addition to virgin cellulose fibers also the fibers recovered during recycling process are used in its production. However, the use of recycled fibers causes slight deterioration of the mechanical properties of the corrugated board. In addition, converting processes such as printing, die-cutting, lamination, etc. cause micro-damage in the corrugated cardboard layers. In this work, the focus is precisely on the crushing of corrugated cardboard. A series of laboratory experiments were conducted, in which the different types of single-walled corrugated cardboards were pressed in a fully controlled manner to check the impact of the crush on the basic material parameters. The amount of crushing (with a precision of 10 micrometers) was controlled by a precise FEMat device, for crushing the corrugated board in the range from 10 to 70% of its original thickness. In this study, the influence of crushing on bending, twisting and shear stiffness as well as a residual thickness and edge crush resistance of corrugated board was investigated. Then, a procedure based on a numerical homogenization, taking into account a partial delamination in the corrugated layers to determine the degraded material stiffness was proposed. Finally, using the empirical-numerical method, a simplified calculation model of corrugated cardboard was derived, which satisfactorily reflects the experimental results.

Author(s):  
Tomasz Garbowski ◽  
Tomasz Gajewski ◽  
Damian Mrówczyński ◽  
Radosław Jędrzejczak

Corrugated cardboard is an ecological material, mainly because, in addition to virgin cellulose fibers also the fibers recovered during recycling process are used in its production. However, the use of recycled fibers causes slight deterioration of the mechanical properties of the corrugated board. In addition, converting processes such as printing, die-cutting, lamination, etc. cause micro-damage in the corrugated cardboard layers. In this work, the focus is precisely on the crushing of corrugated cardboard. A series of laboratory experiments were conducted, in which the different types of single-walled corrugated cardboards were pressed in a fully controlled manner to check the impact of the crush on the basic material parameters. The amount of crushing (with a precision of 10 micrometers) was controlled by a precise FEMat device, for crushing the corrugated board in the range from 10 to 70 % of its original thickness. In this study, the influence of crushing on bending, twisting and shear stiffness as well as a residual thickness and edge crush resistance of corrugated board was investigated. Then, a procedure based on a numerical homogenization, taking into account a partial delamination in the corrugated layers to determine the degraded material stiffness was proposed. Finally, using the empirical-numerical method, a simplified calculation model of corrugated cardboard was derived, which satisfactorily reflects the experimental results.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4321
Author(s):  
Tomasz Gajewski ◽  
Tomasz Garbowski ◽  
Natalia Staszak ◽  
Małgorzata Kuca

As long as non-contact digital printing remains an uncommon standard in the corrugated packaging industry, corrugated board crushing remains a real issue that affects the load capacity of boxes. Crushing mainly occurs during the converting of corrugated board (e.g., analog flexographic printing or laminating) and is a process that cannot be avoided. However, as this study shows, it can be controlled. In this work, extended laboratory tests were carried out on the crushing of double-walled corrugated board. The influence of fully controlled crushing (with a precision of ±10 μm) in the range from 10 to 70% on different laboratory measurements was checked. The typical mechanical tests—i.e., edge crush test, four-point bending test, shear stiffness test, torsional stiffness test, etc.—were performed on reference and crushed specimens. The residual thickness reduction of the crushed samples was also controlled. All empirical observations and performed measurements were the basis for building an analytical model of crushed corrugated board. The proven and verified model was then used to study the crushing effect of the selected corrugated board on the efficiency of simple packages with various dimensions. The proposed measurement technique was successfully used to precisely estimate and thus control the crushing of corrugated board, while the proposed numerical and analytical techniques was used to estimate the load capacity of corrugated board packaging. A good correlation between the measured reduced stiffness of the corrugated cardboard and the proposed analytical predictive models was obtained.


Author(s):  
Tomasz Gajewski ◽  
Tomasz Garbowski ◽  
Natalia Staszak ◽  
Małgorzata Kuca

As long as the non-contact digital printing is not a common standard in the corrugated packaging industry, corrugated board crushing is a real issue that affects the load capacity of the boxes. Crushing mainly occurs during the converting of corrugated board (e.g. analog flexographic printing or laminating) and is a process that cannot be avoided. However, as show in this study, it can be controlled. In this work, extended laboratory tests were carried out on the crushing of double-walled corrugated board. The influence of fully controlled crushing (with a precision: ±10 μm) in the range from 10 to 70 % on different laboratory measurements was checked. Most of the typical mechanical tests were performed e.g. edge crush test, four-point bending test, shear stiffness test, torsional stiffness test, etc. on reference and crushed specimens. The residual thickness reduction of the crushed samples was also controlled. All empirical observations and performed measurements were the basis for building an analytical model of crushed corrugated board. The proven and verified model was then used to study the crushing effect of the selected corrugated board on the efficiency of simple packages with various dimensions.


2019 ◽  
Vol 820 ◽  
pp. 104-117 ◽  
Author(s):  
Abdeljalil Jikal ◽  
Hassan Chaffoui ◽  
Mohamed El Ghorba

The cables are widely used in mechanical, electrical and civil engineering applications, as they are flexible and highly resistant. In this paper, the behavior of the elastic limit of straight central core strands is studied. In this study, we focus on the elastic limit’s behavior of straight central core strands. That is, we investigate 27 cores with different configurations. They generally consist of 7 wires (1+6) belonging to wire ropes of type 19x7 subjected to static axial loads. The numerical study is performed using finite element method (FEM). The main results are compared with experimental data. Finally, to determinate the impact of three parameters: the basic material constituting the strands, the winding angle of wires and the diameter of strands on the yield strength of the core strands, we apply a design of experiments (DOE) analysis by YATES’ method.


2012 ◽  
Vol 714 ◽  
pp. 3-11 ◽  
Author(s):  
David Weidt ◽  
Łukasz Figiel ◽  
Martin Buggy

A concept for improving the impact resistance of carbon fibre reinforced plastic (CFRP) laminates by using a carbon nanotube (CNT)/epoxy surface coating is presented. An initial parametric numerical study shows the effects of interphase properties on the macroscopic stress-strain behaviour of carbon nanotube/epoxy nanocomposites. Finite element (FE) simulations carried out for fully aligned single-walled CNTs (SWCNTs) and double-walled CNTs (DWCNTs) investigated the influence of properties of the polymer/CNT interphase and the interwall phase of DWCNTs. They reveal that a high shear stiffness of the CNT/polymer interphase is essential to take the full advantage of the load-bearing ability of the inner wall of the DWCNT, and thus enhance the mechanical performance of the nanocomposite. Furthermore the interphase shear stress distributions in interwall and CNT/polymer interphase of a DWCNT point out the relationship between CNT/epoxy interphase damage propagation and shear stress in the interwall phase.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1095
Author(s):  
Tomasz Garbowski ◽  
Tomasz Gajewski ◽  
Jakub Krzysztof Grabski

This paper presents a modified analytical formula for estimating the static top-to-bottom compressive strength of corrugated board packaging with different perforations. The analytical framework is based here on Heimerl’s assumption with an extension from a single panel to a full box, enhanced with a numerically calculated critical load. In the proposed method, the torsional and shear stiffness of corrugated cardboard, as well as the panel depth-to-width ratio is implemented in the finite element model used for buckling analysis. The new approach is compared with the successful though the simplified McKee formula and is also verified with the experimental results of various packaging designs made of corrugated cardboard. The obtained results indicate that for boxes containing specific perforations, simplified methods give much larger estimation error than the analytical–numerical approach proposed in the article. To the best knowledge of the authors, the influence of the perforations has never been considered before in the analytical or analytical–numerical approach for estimation of the compressive strength of boxes made of corrugated paperboard. The novelty of this paper is to adopt the method presented to include perforation influence on the box compressive strength estimation.


2021 ◽  
pp. 174425912098418
Author(s):  
Toivo Säwén ◽  
Martina Stockhaus ◽  
Carl-Eric Hagentoft ◽  
Nora Schjøth Bunkholt ◽  
Paula Wahlgren

Timber roof constructions are commonly ventilated through an air cavity beneath the roof sheathing in order to remove heat and moisture from the construction. The driving forces for this ventilation are wind pressure and thermal buoyancy. The wind driven ventilation has been studied extensively, while models for predicting buoyant flow are less developed. In the present study, a novel analytical model is presented to predict the air flow caused by thermal buoyancy in a ventilated roof construction. The model provides means to calculate the cavity Rayleigh number for the roof construction, which is then correlated with the air flow rate. The model predictions are compared to the results of an experimental and a numerical study examining the effect of different cavity designs and inclinations on the air flow rate in a ventilated roof subjected to varying heat loads. Over 80 different test set-ups, the analytical model was found to replicate both experimental and numerical results within an acceptable margin. The effect of an increased total roof height, air cavity height and solar heat load for a given construction is an increased air flow rate through the air cavity. On average, the analytical model predicts a 3% higher air flow rate than found in the numerical study, and a 20% lower air flow rate than found in the experimental study, for comparable test set-ups. The model provided can be used to predict the air flow rate in cavities of varying design, and to quantify the impact of suggested roof design changes. The result can be used as a basis for estimating the moisture safety of a roof construction.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3786
Author(s):  
Tomasz Garbowski ◽  
Anna Knitter-Piątkowska ◽  
Damian Mrówczyński

The corrugated board packaging industry is increasingly using advanced numerical tools to design and estimate the load capacity of its products. This is why numerical analyses are becoming a common standard in this branch of manufacturing. Such trends cause either the use of advanced computational models that take into account the full 3D geometry of the flat and wavy layers of corrugated board, or the use of homogenization techniques to simplify the numerical model. The article presents theoretical considerations that extend the numerical homogenization technique already presented in our previous work. The proposed here homogenization procedure also takes into account the creasing and/or perforation of corrugated board (i.e., processes that undoubtedly weaken the stiffness and strength of the corrugated board locally). However, it is not always easy to estimate how exactly these processes affect the bending or torsional stiffness. What is known for sure is that the degradation of stiffness depends, among other things, on the type of cut, its shape, the depth of creasing as well as their position or direction in relation to the corrugation direction. The method proposed here can be successfully applied to model smeared degradation in a finite element or to define degraded interface stiffnesses on a crease line or a perforation line.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1976
Author(s):  
Tomasz Garbowski ◽  
Tomasz Gajewski

Knowing the material properties of individual layers of the corrugated plate structures and the geometry of its cross-section, the effective material parameters of the equivalent plate can be calculated. This can be problematic, especially if the transverse shear stiffness is also necessary for the correct description of the equivalent plate performance. In this work, the method proposed by Biancolini is extended to include the possibility of determining, apart from the tensile and flexural stiffnesses, also the transverse shear stiffness of the homogenized corrugated board. The method is based on the strain energy equivalence between the full numerical 3D model of the corrugated board and its Reissner-Mindlin flat plate representation. Shell finite elements were used in this study to accurately reflect the geometry of the corrugated board. In the method presented here, the finite element method is only used to compose the initial global stiffness matrix, which is then condensed and directly used in the homogenization procedure. The stability of the proposed method was tested for different variants of the selected representative volume elements. The obtained results are consistent with other technique already presented in the literature.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1425
Author(s):  
Tarek Bouzennada ◽  
Farid Mechighel ◽  
Kaouther Ghachem ◽  
Lioua Kolsi

A 2D-symmetric numerical study of a new design of Nano-Enhanced Phase change material (NEPCM)-filled enclosure is presented in this paper. The enclosure is equipped with an inner tube allowing the circulation of the heat transfer fluid (HTF); n-Octadecane is chosen as phase change material (PCM). Comsol-Multiphysics commercial code was used to solve the governing equations. This study has been performed to examine the heat distribution and melting rate under the influence of the inner-tube position and the concentration of the nanoparticles dispersed in the PCM. The inner tube was located at three different vertical positions and the nanoparticle concentration was varied from 0 to 0.06. The results revealed that both heat transfer/melting rates are improved when the inner tube is located at the bottom region of the enclosure and by increasing the concentration of the nanoparticles. The addition of the nanoparticles enhances the heat transfer due to the considerable increase in conductivity. On the other hand, by placing the tube in the bottom area of the enclosure, the liquid PCM gets a wider space, allowing the intensification of the natural convection.


Sign in / Sign up

Export Citation Format

Share Document