scholarly journals Fuel Improvement Measures for Particulate Matter Emission Reduction during Corn Cob Combustion

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4548
Author(s):  
Nataša Dragutinović ◽  
Isabel Höfer ◽  
Martin Kaltschmitt

Fuel-related measures and modernization of small-scale combustion units has become the focus of attention in the renewable heat generation sector, as a means to promote local biomass utilization and fuel-flexibility while meeting strict environmental legislative requirements. With the aim to mitigate total particulate matter emissions and ash-associated problems characteristic of crop residue combustion, (1) corn cob pellets (with and without kaolin and binder) as well as (2) fuel blends with wood pellets were combusted in a pellet oven under full load. Results show that additivation or fuel blending (e.g., 50 wt. % wood and 50 wt. % corn cob pellets) reduce total particulate and CO-emissions by 48 to 60 wt. % and 64 to 89 wt. %, respectively, in comparison to baseline emissions from non-additivized corn cob pellets. Kaolin prevented sintering of corn cob ash. However, considerable grate ash entrainment was observed. TPM consists of a “primary network”—polyhedral and spherical particles approximately 1 μm in diameter (mainly KCl), and a “secondary network” built on top of the primary network, consisting of square-prism-shaped particles of approximately 200 nm in diameter. KCl and K2SO4 are main compounds in particles from corn cob and wood pellet combustion, respectively. Effective measures demonstrated within this study should be complemented with low-cost coarse ash removal systems.

2017 ◽  
Vol 31 (7) ◽  
pp. 7540-7551 ◽  
Author(s):  
Thomas Zeng ◽  
Justus von Sonntag ◽  
Nadja Weller ◽  
Andreas Pilz ◽  
Volker Lenz ◽  
...  

2013 ◽  
Vol 11 (2) ◽  
pp. 22-28 ◽  
Author(s):  
Michal Vojtíšek ◽  
Martin Pechout

Shrnutí Částice obsažené ve výfukových plynech spalovacích motorů jsou jejich pro lidské zdraví nejvíce škodlivou složkou. Se snižující se celkovou hmotností emitovaných částic se zvyšují nároky na její měření, které vyžaduje plnoprůtočný ředicí tunnel nebo proporcionální vzorkovač s ředěním části toku s rychlou odezvou. Pro umožnění takových měření během jízdy vozidla a v méně vybavených laboratořích bylo vytvořeno nízkonákladové zařízení pro proporcionální vzorkování výfukových plynů. Zařízení využívá dvojici regulátorů hmotnostního průtoku, z nichž jeden dodává proměnlivé množství ředicího vzduchu do miniaturního ředicího tunelu, a druhý udržuje konstantní průtok směsi ředicího vzduchu a výfukových plynů přes filtr, na který jsou částice vzorkovány. Výsledky naměřené tímto systémem během dynamických jízdních cyklů jsou, po korekci systematického rozdílu, v rozmezí faktoru dvou od výsledků gravimetrické analýzy vzorků odebraných z klasického plnoprůtočného ředicího tunelu.


Author(s):  
Wei Fang ◽  
David B. Kittelson ◽  
William F. Northrop

Dual-fuel reactivity-controlled compression ignition (RCCI) combustion can yield high thermal efficiency and simultaneously low NOx and soot emissions. Although soot emissions from RCCI is very low, hydrocarbon emissions are high, potentially resulting in higher than desired total particulate matter (PM) mass and number caused by semi-volatile species converting the particle phase upon primary dilution in the exhaust plume. Such high organic fraction PM is known to be highly sensitive to the dilution conditions used when collecting samples on a filter or when measuring particle number using particle sizing instruments. In this study, PM emissions from a modified single-cylinder diesel engine operating in RCCI and conventional diesel combustion modes were investigated under different dilution conditions. To investigate the effect of the fumigated fuel on the PM emissions, 150 proof hydrous ethanol and gasoline were used as low reactivity fuels to study the relative contribution of fumigant versus directly injected fuel on the PM emissions. Our study found that PM from RCCI combustion is more sensitive to the variation of dilution conditions than PM from single fuel conventional diesel combustion. RCCI PM primarily consisted of semi-volatile organic compounds and a smaller amount of solid carbonaceous particles. The fumigated fuel had a significant effect on the PM emissions characteristics for RCCI combustion. Hydrous ethanol fueled RCCI PM contained a larger fraction of volatile materials and were more sensitive to the variation of dilution conditions compared to the gasoline fueled RCCI mode.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Wei Fang ◽  
David B. Kittelson ◽  
William F. Northrop

Dual-fuel reactivity-controlled compression ignition (RCCI) combustion can yield high thermal efficiency and simultaneously low NOx and soot emissions. Although soot emissions from RCCI are very low, hydrocarbon (HC) emissions are high, potentially resulting in higher than desired total particulate matter (PM) mass and number caused by semivolatile species converting the particle phase upon primary dilution in the exhaust plume. Such high organic fraction PM is known to be highly sensitive to dilution conditions used when collecting samples on a filter or when measuring particle number using particle sizing instruments. In this study, PM emissions from a modified single-cylinder diesel engine operating in RCCI and conventional diesel combustion (CDC) modes were investigated under controlled dilution conditions. To investigate the effect of the fumigated fuel on the PM emissions, 150 proof hydrous ethanol and gasoline were used as low reactivity fuels. The data reveal that PM from RCCI combustion is more sensitive to the variation of dilution conditions than PM from single fuel conventional diesel combustion. RCCI PM primarily consisted of semivolatile organic compounds and a smaller amount of solid carbonaceous particles. The fumigated fuel had a significant effect on PM emissions' characteristics for RCCI combustion. Hydrous ethanol fueled RCCI PM contained a larger fraction of volatile materials and was more sensitive to the variation of dilution conditions compared to the gasoline fueled RCCI mode.


2019 ◽  
Vol 4 (4) ◽  
pp. 358-369
Author(s):  
Dóra Mentes ◽  
Zoltán Sajti ◽  
Tamás László Koós ◽  
Csaba Póliska

Over the last decade, the public has been paying increasing attention to reducing greenhouse gas and acid rain emissions and reducing particulate matter, which is extremely harmful to health and the environment. To improve air quality, the European Commission has achieved a range of measures to reduce air pollutant emissions in the transport, heat and electricity, industrial and agricultural sectors. In Hungary, the amount of gas and solid air pollutants from solid fuel combustion used by the public during the heating season represents a significant percentage of the total amount present in the atmosphere. In 2016, taking into the total emission, the 29% of CO2 emissions; 85% of CO emissions; 75% of the particulate matter emissions and 21% of the NOx emissions were derived from households. It follows that the improvement of air quality can also be achieved by controlling the emissions of solid fuel combustion plants. During our research we aimed to optimize the operation of a newly purchased TOTYA S18 boiler and a pilot pellet boiler. Operating the boilers in the correct mode minimizes air pollutant emissions, and the greater part of the heat generated is actually turns to heating the home, as with poor settings, a lot of heat leaves through the chimney. The data obtained during the tests can also be used to determine whether the boilers comply with the emission values set out in Commission Regulation (EU) 2015/1185.


2019 ◽  
Vol 179 ◽  
pp. 94-105 ◽  
Author(s):  
Gary D. Gillespie ◽  
Aoife A. Gowen ◽  
John M. Finnan ◽  
John P. Carroll ◽  
Damien J. Farrelly ◽  
...  

2006 ◽  
Vol 22 (01) ◽  
pp. 33-40
Author(s):  
Bhaskar Kura ◽  
Kalpalatha Kambham ◽  
Sivaramakrishnan Sangameswaran ◽  
Xavier Silvadasan

Sand is being replaced with alternative materials in abrasive blasting because of the adverse health effects of silica emissions from the process. However, many industries still use sand due to its low cost and abundant occurrence in nature. This paper presents the effect of blast pressure and feed rate on particulate matter (PM) emission factors and optimum process conditions that can minimize PM emissions in dry abrasive blasting using specialty sand.


Sign in / Sign up

Export Citation Format

Share Document