scholarly journals A New Zealand Perspective on Hydrogen as an Export Commodity: Timing of Market Development and an Energy Assessment of Hydrogen Carriers

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4876
Author(s):  
James T. Hinkley

Hydrogen is currently receiving significant attention and investment as a key enabler of defossilised global energy systems. Many believe this will eventually result in the international trade of hydrogen as a commodity from countries with significant renewable energy resources, for example New Zealand and Australia, to net energy importing countries including Japan and Korea. Japan has, since 2014, been actively exploring the components of the necessary supply chains, including the assessment of different hydrogen carriers. Public/private partnerships have invested in demonstration projects to assess the comparative merits of liquid hydrogen, ammonia, and organic carriers. On the supply side, significant projects have been proposed in Australia while the impending closure of New Zealand’s Tiwai Point aluminium smelter at the end of 2024 may provide an opportunity for green hydrogen production. However, it is also evident that the transition to a hydrogen economy will take some years and confidence around the timing of supply and demand capacity is essential for new energy infrastructure investment. This paper reviews the expected development of an export market to Japan and concludes that large scale imports are unlikely before the late 2020s. Comparative evaluation of the energy efficiency of various hydrogen carriers concludes that it is too early to call a winner, but that ammonia has key advantages as a fungible commodity today, while liquid hydrogen has the potential to be a more efficient energy carrier. Ultimately it will be the delivered cost of hydrogen that will determine which carriers are used, and while energy efficiency is a key metric, there are other considerations such as infrastructure availability, and capital and operating costs.

2020 ◽  
Vol 1 (1) ◽  
pp. 33-47
Author(s):  
Tran Viet Dung

AbstractVietnam has experienced an economic growth accompanied by increasing energy demand and inadequate supplies. Like most developing countries, the increased inefficient use of energy in Vietnam leads to increased greenhouse gas emissions and high energy costs for consumers. Also, the traditional sources of energy are not sufficient to satisfy the demand of the economic sectors.With the negative impact of climate change on water resources and the depletion of coal, oil and gas reserves, Vietnam must diversify and integrate other forms of renewable energies into its energy mix. The efficient use of renewable energy resources can boost economic development. Thus, the policies for endorsing renewable energies and energy efficiency are playing a vital role in ensuring the sustainable development for Vietnam’s future. This paper examines the legal and policy framework influencing the deployment of renewable energies and energy efficiency in Vietnam. The paper also attempts to identify major barriers to a large scale deployment of renewable energies and energy efficiency technologies and offers some possible solutions.


Author(s):  
Graham Palmer ◽  
Ashley Roberts ◽  
Andrew Hoadley ◽  
Roger Dargaville ◽  
Damon Honnery

Water electrolysis powered by solar photovoltaics (PV) is one of several promising green hydrogen production technologies. It is critical that the life cycle environmental impacts and net energy balance are...


2018 ◽  
Vol 189 ◽  
pp. 00010 ◽  
Author(s):  
Adelbert P. H. Goede

CO2 is a valuable resource, life on Earth depends on it. Rather than wasting it to the atmosphere, or burying it underground, CO2 can be combined with water and turned into valuable chemicals and fuels, the process being powered by renewable electricity. Renewable electricity generated by wind and photovoltaics (PV) is making big strides, but is limited by ill-matched supply and demand. In addition, electricity only makes up 20% to 30% of total energy demand. Domestic heating, high temperature/pressure Industrial processes and mobility/transportation gobble up the rest. Mobility and transportation prove particularly difficult to decarbonise. Aviation is a case in point. Battery-powered aircraft are unlikely to become feasible by 2050. Hydrogen has too low an energy density and is haunted by safety issues. Current policy, therefore, is directed at bio fuels. One problem, there is not enough of it. The Fuel vs. Food vs. Flora trilemma of bio-based fuel is unlikely to gain public acceptance. By converting renewable electricity into fuel, power to molecules (P2M), two birds are killed with one stone: providing fuel for long haul transportation and enabling long-term, large-scale energy storage to cover the seasonal mismatch between supply and demand of renewable electricity. Feedstock consists of air-captured carbon or nitrogen and water. Chemically combined, it creates a liquid fuel with greatly enhanced energy density, such as kerosene or ammonia, or gaseous fuel like methane which can replace natural gas in the existing gas network. Direct air capture of CO2 is currently being commercialised. The conversion technology of water and CO2 by electrolysis has recently been extended to novel plasma technology, the sub ject of this paper. For CO2 splitting by plasmolysis, the reduced electric field has been identified as the key parameter explaining and improving the energy efficiency. Energy efficiency by plasmolysis is similar to that of electrolysis, but offers advantages in energy density, upscaling and switching in response to intermittent power with no use of scarce material. A simple model explains the inverse relation between energy efficiency and particle conversion and relates input microwave power to CO2 gas density, plasma dimension and ionisation degree, allowing design parameters for a 100 kW pilot reactor to be specified. Recycling CO2 in combination with P2M is a game-changing technology to meet overall CO2 emission reduction targets. It takes advantage of existing, inexpensive infrastructure for energy storage, transport and distribution. Existing internal combustion engine technology can be maintained where necessary. Close coupled to a remote solar array or an off-shore wind farm it offers a solution to decentralised renewable fuel production at the renewable electricity source.


2014 ◽  
Vol 7 (10) ◽  
pp. 3264-3278 ◽  
Author(s):  
Roger Sathre ◽  
Corinne D. Scown ◽  
William R. Morrow ◽  
John C. Stevens ◽  
Ian D. Sharp ◽  
...  

This article reports the first prospective life-cycle net energy assessment of a gigawatt-scale photoelectrochemical (PEC) hydrogen production facility.


2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Catherine M. Febria ◽  
Maggie Bayfield ◽  
Kathryn E. Collins ◽  
Hayley S. Devlin ◽  
Brandon C. Goeller ◽  
...  

In Aotearoa New Zealand, agricultural land-use intensification and decline in freshwater ecosystem integrity pose complex challenges for science and society. Despite riparian management programmes across the country, there is frustration over a lack in widespread uptake, upfront financial costs, possible loss in income, obstructive legislation and delays in ecological recovery. Thus, social, economic and institutional barriers exist when implementing and assessing agricultural freshwater restoration. Partnerships are essential to overcome such barriers by identifying and promoting co-benefits that result in amplifying individual efforts among stakeholder groups into coordinated, large-scale change. Here, we describe how initial progress by a sole farming family at the Silverstream in the Canterbury region, South Island, New Zealand, was used as a catalyst for change by the Canterbury Waterway Rehabilitation Experiment, a university-led restoration research project. Partners included farmers, researchers, government, industry, treaty partners (Indigenous rights-holders) and practitioners. Local capacity and capability was strengthened with practitioner groups, schools and the wider community. With partnerships in place, co-benefits included lowered costs involved with large-scale actions (e.g., earth moving), reduced pressure on individual farmers to undertake large-scale change (e.g., increased participation and engagement), while also legitimising the social contracts for farmers, scientists, government and industry to engage in farming and freshwater management. We describe contributions and benefits generated from the project and describe iterative actions that together built trust, leveraged and aligned opportunities. These actions were scaled from a single farm to multiple catchments nationally.


2020 ◽  
pp. 165-171
Author(s):  
Iryna Hryhoruk

Exhaustion of traditional energy resources, their uneven geographical location, and catastrophic changes in the environment necessitate the transition to renewable energy resources. Moreover, Ukraine's economy is critically dependent on energy exports, and in some cases, the dependence is not only economic but also political, which in itself poses a threat to national security. One of the ways to solve this problem is the large-scale introduction and use of renewable energy resources, bioenergy in particular. The article summarizes and offers methods for assessing the energy potential of agriculture. In our country, a significant amount of biomass is produced every year, which remains unused. A significant part is disposed of due to incineration, which significantly harms the environment and does not allow earning additional funds. It is investigated that the bioenergy potential of agriculture depends on the geographical distribution and varies in each region of Ukraine. Studies have shown that as of 2019 the smallest share in the total amount of conventional fuel that can be obtained from agricultural waste and products suitable for energy production accounts for Zakarpattya region - 172.5 thousand tons. (0.5% of the total) and Chernivtsi region - 291.3 thousand tons. (0.9%). Poltava region has the greatest potential - 2652.2 thousand tons. (7.8%) and Vinnytsia - 2623.7 thousand tons. (7.7%). It should be noted that the use of the energy potential of biomass in Ukraine can be called unsatisfactory. The share of biomass in the provision of primary energy consumption is very small. For bioenergy to occupy its niche in the general structure of the agro-industrial complex, it is necessary to develop mechanisms for its stimulation. In addition, an effective strategy for the development of the bioenergy sector of agriculture is needed. The article considers the general energy potential of agriculture, its indicative structure. The analysis is also made in terms of areas. In addition, an economic assessment of the possible use of existing potential is identified.


Author(s):  
Mark Endrei ◽  
Chao Jin ◽  
Minh Ngoc Dinh ◽  
David Abramson ◽  
Heidi Poxon ◽  
...  

Rising power costs and constraints are driving a growing focus on the energy efficiency of high performance computing systems. The unique characteristics of a particular system and workload and their effect on performance and energy efficiency are typically difficult for application users to assess and to control. Settings for optimum performance and energy efficiency can also diverge, so we need to identify trade-off options that guide a suitable balance between energy use and performance. We present statistical and machine learning models that only require a small number of runs to make accurate Pareto-optimal trade-off predictions using parameters that users can control. We study model training and validation using several parallel kernels and more complex workloads, including Algebraic Multigrid (AMG), Large-scale Atomic Molecular Massively Parallel Simulator, and Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics. We demonstrate that we can train the models using as few as 12 runs, with prediction error of less than 10%. Our AMG results identify trade-off options that provide up to 45% improvement in energy efficiency for around 10% performance loss. We reduce the sample measurement time required for AMG by 90%, from 13 h to 74 min.


Sign in / Sign up

Export Citation Format

Share Document