scholarly journals Legal and Policy Framework for Renewable Energy and Energy Efficiency Development in Vietnam

2020 ◽  
Vol 1 (1) ◽  
pp. 33-47
Author(s):  
Tran Viet Dung

AbstractVietnam has experienced an economic growth accompanied by increasing energy demand and inadequate supplies. Like most developing countries, the increased inefficient use of energy in Vietnam leads to increased greenhouse gas emissions and high energy costs for consumers. Also, the traditional sources of energy are not sufficient to satisfy the demand of the economic sectors.With the negative impact of climate change on water resources and the depletion of coal, oil and gas reserves, Vietnam must diversify and integrate other forms of renewable energies into its energy mix. The efficient use of renewable energy resources can boost economic development. Thus, the policies for endorsing renewable energies and energy efficiency are playing a vital role in ensuring the sustainable development for Vietnam’s future. This paper examines the legal and policy framework influencing the deployment of renewable energies and energy efficiency in Vietnam. The paper also attempts to identify major barriers to a large scale deployment of renewable energies and energy efficiency technologies and offers some possible solutions.

Author(s):  
Praveen Cheekatamarla ◽  
Vishaldeep Sharma ◽  
Bo Shen

Abstract Economic and population growth is leading to increased energy demand across all sectors – buildings, transportation, and industry. Adoption of new energy consumers such as electric vehicles could further increase this growth. Sensible utilization of clean renewable energy resources is necessary to sustain this growth. Thermal needs in a building pose a significant challenge to the energy infrastructure. Supporting the current and future building thermal energy needs to offset the total electric demand while lowering the carbon footprint and enhancing the grid flexibility is presented in this study. Performance assessment of heat pumps, renewable energy, non-fossil fuel-based cogeneration systems, and their hybrid configurations was conducted. The impact of design configuration, coefficient of performance (COP), electric grid's primary energy efficiency on the key attributes of total carbon footprint, life cycle costs, operational energy savings, and site-specific primary energy efficiency are analyzed and discussed in detail.


2021 ◽  
Author(s):  
Karin van der Wiel ◽  
Laurens Stoop ◽  
Bas van Zuijlen ◽  
Russel Blackport ◽  
Mechteld van den Broek ◽  
...  

<p>To mitigate climate change a renewable energy transition is needed. Existing power systems will need to be re-designed to balance variable renewable energy production with variable energy demand. I will describe the meteorological sensitivity of a highly-renewable European energy system based on large ensemble simulations from two global climate models. From 2×2000 years of simulated weather conditions, we calculated daily wind and solar energy yields and energy demand and selected events of high societal impact: extreme high energy shortfall (residual load, i.e. demand minus renewable production). High energy shortfall days are characterized by large-scale high pressure systems over central Europe, with lower than normal wind speeds and below normal temperatures, driving up energy demands. The events typically occur mid-winter, locked to the coldest months of the year. Near-stationary high pressure situations occur that cause long lasting periods of high energy shortfall. A spatial redistribution of wind turbines and solar panels cannot prevent these high-impact events, options to import renewable energy from remote locations during these events are therefore limited. Projected changes due to climate change are substantially smaller than interannual variability. Future power systems with large penetration of variable renewable energy must be designed with these events in mind.</p>


2016 ◽  
Vol 36 (1) ◽  
pp. 196-212
Author(s):  
MF Akorede ◽  
O Ibrahim ◽  
SA Amuda ◽  
AO Otuoze ◽  
BJ Olufeagba

Over 80% of the current Nigerian primary energy consumption is met by petroleum. This overdependence on fossil fuels derived from petroleum for local consumption requirements should be a serious source of concern for the country in two ways – depletion of the resources and negative impact on the environment. This paper presents a critical review of the available renewable energy resources in Nigeria, namely; biomass, hydropower, solar and wind energy. It examines the current energy situation in the country and equally discusses the various energy policy documents developed by the government. Using the scenario-based International Atomic Energy Agency models, the projected energy demand and supply structure of the country through 2030 are presented and analysed. Overall, this study shows that Nigeria will overcome her present energy crisis if she explores the abundant renewable energy resources in the country.  The data presented in this paper is a crucial eye-opener for relevant government agencies towards developing these energy resources in tackling the present energy crisis in Nigeria.  http://dx.doi.org/10.4314/njt.v36i1.25


2020 ◽  
pp. 165-171
Author(s):  
Iryna Hryhoruk

Exhaustion of traditional energy resources, their uneven geographical location, and catastrophic changes in the environment necessitate the transition to renewable energy resources. Moreover, Ukraine's economy is critically dependent on energy exports, and in some cases, the dependence is not only economic but also political, which in itself poses a threat to national security. One of the ways to solve this problem is the large-scale introduction and use of renewable energy resources, bioenergy in particular. The article summarizes and offers methods for assessing the energy potential of agriculture. In our country, a significant amount of biomass is produced every year, which remains unused. A significant part is disposed of due to incineration, which significantly harms the environment and does not allow earning additional funds. It is investigated that the bioenergy potential of agriculture depends on the geographical distribution and varies in each region of Ukraine. Studies have shown that as of 2019 the smallest share in the total amount of conventional fuel that can be obtained from agricultural waste and products suitable for energy production accounts for Zakarpattya region - 172.5 thousand tons. (0.5% of the total) and Chernivtsi region - 291.3 thousand tons. (0.9%). Poltava region has the greatest potential - 2652.2 thousand tons. (7.8%) and Vinnytsia - 2623.7 thousand tons. (7.7%). It should be noted that the use of the energy potential of biomass in Ukraine can be called unsatisfactory. The share of biomass in the provision of primary energy consumption is very small. For bioenergy to occupy its niche in the general structure of the agro-industrial complex, it is necessary to develop mechanisms for its stimulation. In addition, an effective strategy for the development of the bioenergy sector of agriculture is needed. The article considers the general energy potential of agriculture, its indicative structure. The analysis is also made in terms of areas. In addition, an economic assessment of the possible use of existing potential is identified.


Author(s):  
Xabier Guinda ◽  
Araceli Puente ◽  
José A. Juanes ◽  
Francisco Royano ◽  
Felipe Fernández ◽  
...  

The high energy demand and the threat of climate change have led to a remarkable development of renewable energies, initially through technologies applied to the terrestrial environment and, recently, through the awakening of marine renewable energies. However, the development of these types of projects is often hampered by failure to pass the corresponding environmental impact assessment process. The complexity of working in the marine environment and the uncertainties associated with assessing the impacts of such projects make it difficult to carry out objective and precise environmental impact assessments. AMBEMAR-DSS seeks to establish a basis for understanding and agreement between the different stakeholders (project developers, public administrations, environmental organizations and the public in general), in order to find solutions that allow the development of marine renewable energies, minimizing their environmental cost. For this purpose, a DSS is proposed which, based on cartographic information and using objective and quantifiable criteria, allows comparative assessments and analyses between different project alternatives. The analytical procedures used by the system include, among others, hydrodynamic modeling tools and visual impact simulators. In addition, impacts on marine species are assessed taking into account intrinsic ecological and biological aspects. The magnitude of the impacts is quantified by means of fuzzy logic operations and the integration of all the elements is carried out by an interactive multi-criteria analysis. The results are shown in tables, graphs and figures of easy interpretation and can be also visualized geographically by means of a cartographic viewer. The system identifies the main impacts generated in the different phases of the project and allows establishing adequate mitigation measures in search of optimized solutions. The establishment of the assessment criteria has been based on the abundant, but dispersed, scientific literature on the various elements of the system and having the opinion of experts in the various fields. Nevertheless, the DSS developed constitutes a preliminary basis on which to build and improve a system with the input of researchers, promoters and experts from different disciplines.


2021 ◽  
Author(s):  
Brad Riley

This paper examines renewable energy developments on Aboriginal lands in North-West Western Australia at three scales. It first examines the literature developing in relation to large scale renewable energy projects and the Native Title Act (1993)Cwlth. It then looks to the history of small community scale standalone systems. Finally, it examines locally adapted approaches to benefit sharing in remote utility owned networks. In doing so this paper foregrounds the importance of Aboriginal agency. It identifies Aboriginal decision making and economic inclusion as being key to policy and project development in the 'scaling up' of a transition to renewable energy resources in the North-West.


2020 ◽  
Author(s):  
Auraluck Pichitkul ◽  
Lakshmi N. Sankar

Abstract Wind engineering technology has been continuously investigated and developed over the past several decades in response to steadily growing demand for renewable energy resources, in order to meet the increased demand for power production, fixed and floating platforms with different mooring configurations have been fielded, accommodating large-scale offshore wind turbines in deep water areas. In this study, the aerodynamic loads on such systems are modeled using a computational structural dynamics solver called OpenFAST developed by National Renewable Energy Laboratory, coupled to an in-house computational fluid dynamics solver called GT-Hybrid. Coupling of the structural/aerodynamic motion time history with the CFD analysis is done using an open File I/O process. At this writing, only a one-way coupling has been attempted, feeding the blade motion and structural deformations from OpenFAST into the fluid dynamics analysis. The sectional aerodynamic loads for a large scale 5 MW offshore wind turbine are presented, and compared against the baseline OpenFAST simulations with classical blade element-momentum theory. Encouraging agreement has been observed.


2012 ◽  
Vol 1 (4) ◽  
pp. 56-69
Author(s):  
Farzin Shama ◽  
Gholam Hossein Roshani ◽  
Sobhan Roshani ◽  
Arash Ahmadi ◽  
Saber Karami

Producing non-polluting renewable energy in large scale is essential for sustainability of future developments in industry and human society. Among renewable energy resources, solar energy takes a special place because of its free accessibility and affordability. However, the optimization of its production and consumption processes poses important concerns, essentially in the affordability issue. This paper investigates several optimization and performance issues regarding solar panel converters using two-axis controlled solar tracer that has been practically implemented in comparison with fixed converter panels. Results shown in tables and graphs demonstrate clearly the advantages and disadvantages of the methods. Based on these results, large scale solar power plants are being suggested to be equipped with similar devices.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4723 ◽  
Author(s):  
Harald Desing ◽  
Rolf Widmer ◽  
Didier Beloin-Saint-Pierre ◽  
Roland Hischier ◽  
Patrick Wäger

This study proposes a method to estimate the appropriability of renewable energy resources at the global scale, when Earth system boundaries/needs and the human demand for chemical energy are respected. The method is based on an engineering approach, i.e., uncertainties of parameters and models are considered and potentials calculated with 99 % confidence. We used literature data to test our method and provide initial results for global appropriable technical potentials (ATP) that sum up to 71 TW , which is significantly larger than the current global energy demand. Consequently, there is sufficient renewable energy potentially available to increase energy access for a growing world population as well as for a development towards increasingly closed material cycles within the technosphere. Solar energy collected on the built environment ( 29 % ) and in desert areas ( 69 % ) represent the dominant part of this potential, followed in great distance by hydro ( 0.6 % ), terrestrial heat ( 0.4 % ), wind ( 0.35 % ), and biomass ( 0.2 % ). Furthermore, we propose indicators to evaluate an energy mix on different levels, from an energy mix in single products to the mix used by the global economy, against the estimated RE potentials, which allow an evaluation and consideration in the design of sustainable–circular products and systems.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1775 ◽  
Author(s):  
A S M Monjurul Hasan ◽  
Mohammad Rokonuzzaman ◽  
Rashedul Amin Tuhin ◽  
Shah Md. Salimullah ◽  
Mahfuz Ullah ◽  
...  

Bangladesh faced a substantial growth in primary energy demand in the last few years. According to several studies, energy generation is not the only means to address energy demand; efficient energy management practices are also very critical. A pertinent contribution in the energy management at the industrial sector ensures the proper utilization of energy. Energy management and its efficiency in the textile industries of Bangladesh are studied in this paper. The outcomes demonstrate several barriers to energy management practices which are inadequate technical cost-effective measures, inadequate capital expenditure, and poor research and development. However, this study also demonstrates that the risk of high energy prices in the future, assistance from energy professionals, and an energy management scheme constitute the important drivers for the implementation of energy efficiency measures in the studied textile mills. The studied textile industries seem unaccustomed to the dedicated energy service company concept, and insufficient information regarding energy service companies (ESCOs) and the shortage of trained professionals in energy management seem to be the reasons behind this. This paper likewise finds that 3–4% energy efficiency improvements can be gained with the help of energy management practices in these industries.


Sign in / Sign up

Export Citation Format

Share Document