scholarly journals Multi-Period Fast Robust Optimization for Partial Distributed Generators (DGs) Providing Ancillary Services

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4911
Author(s):  
Jian Zhang ◽  
Mingjian Cui ◽  
Yigang He

Distributed generators providing auxiliary service are an important means of guaranteeing the safe and economic operation of a distribution system. In this paper, considering an energy storage system (ESS), switchable capacitor reactor (SCR), step voltage regulator (SVR), and a static VAR compensator (SVC), a two-stage multi-period hybrid integer second-order cone programming (SOCP) robust model with partial DGs providing auxiliary service is developed. If the conic relaxation is not exact, a sequential SOCP is formulated using convex–concave procedure (CCP) and cuts, which can be quickly solved. Moreover, the exact solution of the original problem can be recovered. Furthermore, in view of the shortcomings of the large computer storage capacity and slow computational rate for the column and constraint generation (CCG) method, a method direct iteratively solving the master and sub-problem is proposed. Increases to variables and constraints to solve the master problem are not needed. For the sub-problem, only the model of each single time period needs to be solved. Then, their objective function values are accumulated, and the worst scenarios of each time period are concatenated. As an outcome, a large amount of storage memory is saved and the computational efficiency is greatly enhanced. The capability of the proposed method is validated with three simulation cases.

2020 ◽  
Author(s):  
Rodrigo Zambrana Vargas ◽  
José Calixto Lopes ◽  
Juan C. Colque ◽  
José L. Azcue ◽  
Thales Sousa

With the significant increase in the insertion of wind turbines in the electrical system, the overall inertia of the system is reduced resulting in a loss of its ability to support frequency. This is because it is common to use variable speed wind turbines, based on the Double Fed Induction Generator (DFIG), which are coupled to the power grid through electronic converters, which do not have the same characteristics as synchronous generators. Thus, this paper proposes the use of the DFIG-associated Battery Energy Storage System (BESS) to support the primary frequency. A control strategy was developed, and important factors such as charging and discharging current limitations and operation within battery limits were considered. Time domain simulations have been proposed to study a distribution system containing a wind turbine, showing the advantages of BESS over frequency disturbances.


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4415
Author(s):  
Hak-Ju Lee ◽  
Byeong-Chan Oh ◽  
Seok-Woong Kim ◽  
Sung-Yul Kim

Reliability is an important index which determines the power service and quality provided to customers. As the demand increases continuously and the system changes in accordance with the environmental regulation, the reliability assessment in the distribution system becomes crucial. In this paper, we propose methods for improving the reliability of the distribution system using electric vehicles (EVs) in the system. In this paper, EVs are used as power supplying devices, such as a transportable energy storage system (ESS) which supplies power when fault occurs in the system, and by using a time–space network (TSN) in particular, EV capacity in accordance with the load arrival time was calculated. Unlike other existing reliability assessments, we did not use the average load of customers. Instead, by taking into account the load pattern by times, we considered the priority for load supply in accordance with the failure scenarios and failure times. Based on the priority calculated for each time of failure and failure scenario, plans for EV operation to minimize expected customer interruption cost (ECOST), the reliability index in the distribution system, were established. Finally, a case study was performed using the IEEE RBTS (Roy Billinton Test System) 2 Bus and the performance of the model proposed in this paper was verified based on the result.


Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6976
Author(s):  
Byungki Kim ◽  
Jae-Bum Park ◽  
Dae-Jin Kim

The introduction of a complex electrical vehicle charging (EVC) infrastructure consisting of an electrical vehicle (EV) charger and renewable energy source (RES) in the distribution system has been required as an important countermeasure for global environmental issues. However, the problems for hosting capacity and power stability of the distribution feeder can be caused by the penetration of lager scaled RES and EVC infrastructure. Further, it is required for the efficient operation method to prevent congestion and to ensure hosting capacity for the distribution feeder due to the increase of variable RES and EVC infrastructure in the distribution systems. In order to solve these problems, it is necessary to develop a technology which is capable of stably introducing an EVC infrastructure without reinforcing the existing distribution system. Therefore, to maintain the existing hosting capacity of distribution feeder and allowable limits, this paper presents a virtual power line (VPL) operation method using Energy Storage System (ESS) based on the power and voltage stabilization control to ensure hosting capacity of the EVS infrastructure. The proposed operation method is determined by optimal power compensation rate (PCR) and voltage compensation rate (VCR). Specifically, ESS for VPL is controlled according to the charging and discharging mode is operated according to the comparison value of the PCR and VCR. From the test results, it is verified that hosting capacity of the distribution system can be maintained using the proposed control method of ESS for VPL operation.


2021 ◽  
Vol 11 (17) ◽  
pp. 8231
Author(s):  
Hussein Abdel-Mawgoud ◽  
Salah Kamel ◽  
Marcos Tostado-Véliz ◽  
Ehab E. Elattar ◽  
Mahmoud M. Hussein

In this paper, the Archimedes optimization algorithm (AOA) is applied as a recent metaheuristic optimization algorithm to reduce energy losses and capture the size of incorporating a battery energy storage system (BESS) and photovoltaics (PV) within a distribution system. AOA is designed with revelation from Archimedes’ principle, an impressive physics law. AOA mimics the attitude of buoyant force applied upward on an object, partially or entirely dipped in liquid, which is relative to the weight of the dislodged liquid. Furthermore, the developed algorithm is evolved for sizing several PVs and BESSs considering the changing demand over time and the probability generation. The studied IEEE 69-bus distribution network system has different types of the load, such as residential, industrial, and commercial loads. The simulation results indicate the robustness of the proposed algorithm for computing the best size of multiple PVs and BESSs with a significant reduction in the power system losses. Additionally, the AOA algorithm has an efficient balancing between the exploration and exploitation phases to avoid the local solutions and go to the best global solutions, compared with other studied algorithms.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2831 ◽  
Author(s):  
Sanna Uski ◽  
Kim Forssén ◽  
Jari Shemeikka

Microgrids could be utilized to improve the distribution network resiliency against weather-related network outages and increase the security of power supply of rural electricity consumers. Whereas underground cabling is expensive for the distribution system operator (DSO), an alternative microgrid investment could benefit the DSO and consumer, provided the necessary changes were made in the network regulation. A rural detached house customer microgrid is analysed in comparison to underground cabling, considering the uncertainties in the calculation parameters through a sensitivity analysis. Adequacy of the microgrid power supply during unexpected network outage for a reasonably long duration is assessed, as well as the economics of the feasible microgrid setup consisting of variable generation, controllable generation, and electric storage. The total costs and benefits for the DSO and consumer/prosumer are considered. A microgrid would likely be a more cost-efficient option overall, but not as-is for the consumer. The battery energy storage system (BESS)-related cost-sharing strategies are suggested in this paper in order to assess possible break-even investment solutions for the related parties. The sensitivities of the microgrid and cabling investments were considered in particular. Cost-sharing strategies under network regulatory framework would need to be developed further in order for both the consumer and DSO to benefit from the solution as a whole.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1339 ◽  
Author(s):  
Hee-Jun Cha ◽  
Sung-Eun Lee ◽  
Dongjun Won

Energy storage system (ESS) can play a positive role in the power system due to its ability to store, charge and discharge energy. Additionally, it can be installed in various capacities, so it can be used in the transmission and distribution system and even at home. In this paper, the proposed algorithm for economic optimal scheduling of ESS linked to transmission systems in the Korean electricity market is proposed and incorporated into the BESS (battery energy storage system) demonstration test center. The proposed algorithm considers the energy arbitrage operation through SMP (system marginal price) and operation considering the REC (renewable energy certification) weight of the connected wind farm and frequency regulation service. In addition, the proposed algorithm was developed so that the SOC (state-of-charge) of the ESS could be separated into two virtual SOCs to participate in different markets and generate revenue. The proposed algorithm was simulated and verified through Matlab and loaded into the demonstration system using the Matlab “Runtime” function.


Batteries ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 56
Author(s):  
Panyawoot Boonluk ◽  
Apirat Siritaratiwat ◽  
Pradit Fuangfoo ◽  
Sirote Khunkitti

In this work, optimal siting and sizing of a battery energy storage system (BESS) in a distribution network with renewable energy sources (RESs) of distribution network operators (DNO) are presented to reduce the effect of RES fluctuations for power generation reliability and quality. The optimal siting and sizing of the BESS are found by minimizing the costs caused by the voltage deviations, power losses, and peak demands in the distribution network for improving the performance of the distribution network. The simulation results of the BESS installation were evaluated in the IEEE 33-bus distribution network. Genetic algorithm (GA) and particle swarm optimization (PSO) were adopted to solve this optimization problem, and the results obtained from these two algorithms were compared. After the BESS installation in the distribution network, the voltage deviations, power losses, and peak demands were reduced when compared to those of the case without BESS installation.


2021 ◽  
Vol 4 (2) ◽  
pp. 21-27
Author(s):  
Sharyar ul Hassan Hashmi ◽  
Abasin Ulasyar ◽  
Haris Sheh Zad ◽  
Abraiz Khattak ◽  
Kashif Imran

In this paper, energy management system (EMS) is proposed for institution which helps in reducing the operational cost with the help of using different distributed generators (DGs) and electric vehicles. For this purpose, a scenario is created in which university is connected with national grid having self-powered PV plant, electric vehicles and a diesel generator. Impact of various distributed generators and optimally scheduled energy storage system (ESS) are analyzed for the university campus which helps in reducing operational cost of energy by using campus load data. The proposed model consist of different distributed generators and their effects are observed in various scenarios. Mix Integer linear programming (MILP) is used to get optimized result and then it is compared with Ant Colony Optimization and Linear programming (LP) techniques. Economic and environmental benefits are also discussed. Operational cost was measured and compared and found the role of ESS by using MILP in minimizing operational cost from $798.560 to $756.3850.


Sign in / Sign up

Export Citation Format

Share Document