scholarly journals Time-Lapse Integration at FWU: Fluids, Rock Physics, Numerical Model Integration, and Field Data Comparison

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5476
Author(s):  
Robert Will ◽  
Tom Bratton ◽  
William Ampomah ◽  
Samuel Acheampong ◽  
Martha Cather ◽  
...  

We present the current status of time-lapse seismic integration at the Farnsworth (FWU) CO2 WAG (water-alternating-gas) EOR (Enhanced Oil Recovery) project at Ochiltree County, northwest Texas. As a potential carbon sequestration mechanism, CO2 WAG projects will be subject to some degree of monitoring and verification, either as a regulatory requirement or to qualify for economic incentives. In order to evaluate the viability of time-lapse seismic as a monitoring method the Southwest Partnership (SWP) has conducted time-lapse seismic monitoring at FWU using the 3D Vertical Seismic Profiling (VSP) method. The efficacy of seismic time-lapse depends on a number of key factors, which vary widely from one application to another. Most important among these are the thermophysical properties of the original fluid in place and the displacing fluid, followed by the petrophysical properties of the rock matrix, which together determine the effective elastic properties of the rock fluid system. We present systematic analysis of fluid thermodynamics and resulting thermophysical properties, petrophysics and rock frame elastic properties, and elastic property modeling through fluid substitution using data collected at FWU. These analyses will be framed in realistic scenarios presented by the FWU CO2 WAG development. The resulting fluid/rock physics models will be applied to output from the calibrated FWU compositional reservoir simulation model to forward model the time-lapse seismic response. Modeled results are compared with field time-lapse seismic measurements and strategies for numerical model feedback/update are discussed. While mechanical effects are neglected in the work presented here, complementary parallel studies are underway in which laboratory measurements are introduced to introduce stress dependence of matrix elastic moduli.

2020 ◽  
Vol 39 (9) ◽  
pp. 668-678
Author(s):  
Alan Mur ◽  
César Barajas-Olalde ◽  
Donald C. Adams ◽  
Lu Jin ◽  
Jun He ◽  
...  

Understanding the behavior of CO2 injected into a reservoir and delineating its spatial distribution are fundamentally important in enhanced oil recovery (EOR) and CO2 capture and sequestration activities. Interdisciplinary geoscience collaboration and well-defined workflows, from data acquisition to reservoir simulation, are needed to effectively handle the challenges of EOR fields and envisioned future commercial-scale sites for planned and incidental geologic CO2 storage. Success of operations depends on decisions that are based on good understanding of geologic formation heterogeneities and fluid and pressure movements in the reservoir over large areas over time. We present a series of workflow steps that optimize the use of available data to improve and integrate the interpretation of facies, injection, and production effects in an EOR application. First, we construct a simulation-to-seismic model supported by rock physics to model the seismic signal and signal quality needed for 4D monitoring of fluid and pressure changes. Then we use Bayesian techniques to invert the baseline and monitor seismic data sets for facies and impedances. To achieve a balance between prior understanding of the reservoir and the recorded time-lapse seismic data, we invert the seismic data sets by using multiple approaches. We first invert the seismic data sets independently, exploring sensible parameter scenarios. With the resulting realizations, we develop a shared prior model to link the reservoir facies geometry between seismic vintages upon inversion. Then we utilize multirealization analysis methods to quantify the uncertainties of our predictions. Next, we show how data may be more deeply interrogated by using the facies inversion method to invert prestack seismic differences directly for production effects. Finally, we show and discuss the feedback loop for updating the static and dynamic reservoir simulation model to highlight the integration of geophysical and engineering data within a single model.


2021 ◽  
Author(s):  
Anthony Clark ◽  
Tiziana Vanorio ◽  
Andrey Radostin ◽  
Vladimir Zaitsev

<p>An understanding of micro- and macrofracture behavior in low porosity rocks is pertinent to several areas of energy and environmental science such as petroleum production, carbon sequestration, and enhancement of technologies based on geothermal energy, etc. For example, the carbonate reservoirs in dolomitic or micritic formations with matrix porosities below 6% suggest the importance of fracture-augmented permeability in production. Similarly, hydrocarbons have been found on nearly every continent in tight basement rocks, all of which have little matrix porosity and their permeability therefore rely solely on hydraulic connectivity from fractures. For geothermal energy, various igneous and sedimentary rocks (granites, basalts, and limestones) are being exploited across the globe, with some of the lowest porosity and permeability. In all these cases, fractures are necessary to improve rock permeability and thermal exchange between the rock and working fluid, which can be enabled by hydraulic stimulation, as well as by secondary cracking due to extreme temperature gradients from the injection of cold water. The fracture geometry, density, and distribution all together control not only fluid and thermal transport in the rocks, but also their seismic attributes that can be used to extract information about the fractures. <br>In order to accurately interpret the seismo-acoustic data (usually, the velocities of compression and shear waves) reliable rock physics models are required. Here, we report the results of interpretation of such experimental data for both as-cored rock samples and those subjected to thermo-hydro-chemo-mechanical damage (THCMD) in the laboratory. For interpretation, we use a convenient model of fractured rock in which fractures are represented as planar defects with decoupled shear and normal compliances. The application of such an approach makes it possible to assess and compare the elastic properties of fractures in the rocks before and after application of THCMD procedures. For the analyzed samples of granites, basalts, and limestones it has been found that for a significant portion of rocks, the ratio of normal-to-shear compliances of cracks significantly differ from the value typical of conventionally assumed penny-shape cracks. Furthermore, for some samples, this ratio appears to be noticeably different for fractures existing in the as-cored rock and arising in the same rock after THCMD procedures. These results indicate that damage to a rock typically changes its compliance ratio since the old and new cracks are likely to have different elastic properties. Our results are also consistent with the notion that a specific damage process occurring for a given microstructure will consistently create cracks with a particular set of elastic properties. The proposed methodology for assessment of elastic properties of cracks in rock samples subjected to thermo-hydro-chemo-mechanical damage has given previously inaccessible useful information about the elastic properties of fractures and can be extended to interpretation of seismic attributes of rocks for a broad range of other applications.</p>


2017 ◽  
Author(s):  
Evan Mutual ◽  
David Cho ◽  
Kristopher Albert Innanen

Author(s):  
Ann Muggeridge ◽  
Andrew Cockin ◽  
Kevin Webb ◽  
Harry Frampton ◽  
Ian Collins ◽  
...  

Enhanced oil recovery (EOR) techniques can significantly extend global oil reserves once oil prices are high enough to make these techniques economic. Given a broad consensus that we have entered a period of supply constraints, operators can at last plan on the assumption that the oil price is likely to remain relatively high. This, coupled with the realization that new giant fields are becoming increasingly difficult to find, is creating the conditions for extensive deployment of EOR. This paper provides a comprehensive overview of the nature, status and prospects for EOR technologies. It explains why the average oil recovery factor worldwide is only between 20% and 40%, describes the factors that contribute to these low recoveries and indicates which of those factors EOR techniques can affect. The paper then summarizes the breadth of EOR processes, the history of their application and their current status. It introduces two new EOR technologies that are beginning to be deployed and which look set to enter mainstream application. Examples of existing EOR projects in the mature oil province of the North Sea are discussed. It concludes by summarizing the future opportunities for the development and deployment of EOR.


Author(s):  
A. Ogbamikhumi ◽  
T. Tralagba ◽  
E. E. Osagiede

Field ‘K’ is a mature field in the coastal swamp onshore Niger delta, which has been producing since 1960. As a huge producing field with some potential for further sustainable production, field monitoring is therefore important in the identification of areas of unproduced hydrocarbon. This can be achieved by comparing production data with the corresponding changes in acoustic impedance observed in the maps generated from base survey (initial 3D seismic) and monitor seismic survey (4D seismic) across the field. This will enable the 4D seismic data set to be used for mapping reservoir details such as advancing water front and un-swept zones. The availability of good quality onshore time-lapse seismic data for Field ‘K’ acquired in 1987 and 2002 provided the opportunity to evaluate the effect of changes in reservoir fluid saturations on time-lapse amplitudes. Rock physics modelling and fluid substitution studies on well logs were carried out, and acoustic impedance change in the reservoir was estimated to be in the range of 0.25% to about 8%. Changes in reservoir fluid saturations were confirmed with time-lapse amplitudes within the crest area of the reservoir structure where reservoir porosity is 0.25%. In this paper, we demonstrated the use of repeat Seismic to delineate swept zones and areas hit with water override in a producing onshore reservoir.


Geophysics ◽  
2018 ◽  
Vol 83 (4) ◽  
pp. M41-M48 ◽  
Author(s):  
Hongwei Liu ◽  
Mustafa Naser Al-Ali

The ideal approach for continuous reservoir monitoring allows generation of fast and accurate images to cope with the massive data sets acquired for such a task. Conventionally, rigorous depth-oriented velocity-estimation methods are performed to produce sufficiently accurate velocity models. Unlike the traditional way, the target-oriented imaging technology based on the common-focus point (CFP) theory can be an alternative for continuous reservoir monitoring. The solution is based on a robust data-driven iterative operator updating strategy without deriving a detailed velocity model. The same focusing operator is applied on successive 3D seismic data sets for the first time to generate efficient and accurate 4D target-oriented seismic stacked images from time-lapse field seismic data sets acquired in a [Formula: see text] injection project in Saudi Arabia. Using the focusing operator, target-oriented prestack angle domain common-image gathers (ADCIGs) could be derived to perform amplitude-versus-angle analysis. To preserve the amplitude information in the ADCIGs, an amplitude-balancing factor is applied by embedding a synthetic data set using the real acquisition geometry to remove the geometry imprint artifact. Applying the CFP-based target-oriented imaging to time-lapse data sets revealed changes at the reservoir level in the poststack and prestack time-lapse signals, which is consistent with the [Formula: see text] injection history and rock physics.


Sign in / Sign up

Export Citation Format

Share Document