scholarly journals Analysis of Reservoir Fluid Migration in the Process of CO2 Sequestration in a Partially Depleted Gas Reservoir

Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6398
Author(s):  
Wiesław Szott ◽  
Krzysztof Miłek

This paper addresses problems of reservoir fluid migrations in the process of CO2 sequestration in a partially depleted petroleum reservoir. A detailed analysis of the migrations is required to obtain fundamental characteristics of a sequestration structure, including estimation of its sequestration capacity and leakage risks. The paper presents a general discussion of the relevant mechanisms and their contributions to the analysed issues. The proposed approach to solve the problems relies on the usage of numerical structure modelling and simulations of the sequestration processes on numerical models of the structure. It is applied to a selected geological structure comprising a partially depleted gas reservoir. The modelling includes key types of reservoir fluid migrations: viscous multiphase transport and convection transport. It also takes into account other phenomena that affect fluid migrations including injected gas solubility in the formation water and gas trapping by capillary forces. Correspondingly, the leakage risks are associated with distinct leakage pathways (beyond the structural trap, to the caprock, via activated fractures). All these cases are separately modelled and their detailed characteristics are presented and discussed. The final results of the fluid migrations and their consequences for the leakage events are discussed and some generalized conclusions are drawn from the approach employed in the study.

2019 ◽  
Vol 10 (2) ◽  
pp. 459-470
Author(s):  
V. A. Kontorovich ◽  
В. V. Lunev ◽  
V. V. Lapkovsky

The article discusses the geological structure, oil‐and‐gas‐bearing capacities and salt tectogenesis of the Anabar‐Khatanga saddle located on the Laptev Sea shore. In the study area, the platform sediments are represented by the 14‐45 km thick Neoproterozoic‐Mesozoic sedimentary complexes. The regional cross‐sections show the early and middle Devonian salt‐bearing strata and associated salt domes in the sedimentary cover, which may be indicative of potential hydrocarbon‐containing structures. Diapirs reaching the ground surface can be associated with structures capable of trapping hydrocarbons, and typical anticline structures can occur above the domes buried beneath the sediments. In our study, we used the algorithms and software packages developed by A.A. Trofimuk Institute of Petroleum Geology and Geophysics (IPGG SB RAS). Taking into account the structural geological features of the study area, we conducted numerical simulation of the formation of salt dome structures. According to the numerical models, contrasting domes that reached the ground surface began to form in the early Permian and developed most intensely in the Mesozoic, and the buried diapirs developed mainly in the late Cretaceous and Cenozoic.


2015 ◽  
Vol 32 (1) ◽  
pp. 175
Author(s):  
Argentina Tătaru ◽  
Dan-Paul Ştefănescu ◽  
Sándor Balázs

Sign in / Sign up

Export Citation Format

Share Document