scholarly journals Numerical Study on the Influence of Vortex Generator Arrangement on Heat Transfer Enhancement of Oil-Cooled Motor

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6870
Author(s):  
Junjie Zhao ◽  
Bin Zhang ◽  
Xiaoli Fu ◽  
Shenglin Yan

At present, vortex generators have been extensively used in radiators to improve the overall heat transfer performance. However, there is no research on the effect of vortex generators on the ends of motor coils. Meanwhile, the current research mainly concentrates on the attack angle, shape and size, and lacks a detailed study on the transverse and longitudinal distance and arrangement of vortex generators. In this paper, the improved dimensionless number is used as the key index to evaluate the overall performance of enhanced heat transfer. Firstly, the influence of the attack angle on heat transfer enhancement is discussed through a single pair of rectangular vortex generators, and the results demonstrate that the vortex generator with a 45° attack angle is superior. On this basis, we compare the effects of different longitudinal distances (2 h, 4 h, and 6 h, h meaning the height of vortex generator) on enhanced heat transfer under four distribution modes: Flow-Up (FU), Flow-Down (FU), Flow-Up-Down (FUD), Flow-Down-UP (FDU). Thereafter, the performances of different transverse distances (0.25 h, 0.5 h, and 0.75 h) of the vortex generators are numerically simulated. When comparing the longitudinal distances, FD with a longitudinal distance of 4 h (FD-4h) performs well when the Reynolds number is less than 4000, and FU with a longitudinal distance of 4 h (FU-4h) performs better when the Reynolds number is greater than 4000. Similarly, in the comparison of transverse distances, FD-4h still performs well when the Reynolds number is less than 4000, and FU with a longitudinal distance of 4 h and transverse distance of 0.5 h (FU-4h − 0.5h) is more prominent when the Reynolds number is greater than 4000.

Author(s):  
Jing He ◽  
Liping Liu ◽  
Anthony M. Jacobi

The impact of vortex generator (VG) arrays for air-side heat transfer enhancement is experimentally investigated by full-scale wind-tunnel testing of a plain-fin-and-tube heat exchanger. The VG array is deployed in a “V” to try to create a constructive interference between vortices. Each array is composed of two delta-winglet pairs (four VGs), and placed at an attack angle of 10° or 30°. The frontal air velocity considered is between 2.3–5.4 m/s, corresponding to a Reynolds number range based on the hydraulic diameter of 1500–3400. The thermal-hydraulic performance of the heat exchanger with and without VG enhancement is provided under dry-surface conditions. The experimental results indicate little impact at a relatively small attack angle of 10°. While for the 30° array, a 25–55% augmentation in air-side heat transfer coefficient is measured, but with a pressure drop penalty of 100%. Nevertheless, performance evaluation using the area goodness factor and the volume goodness factor both indicate the superiority of the enhanced heat exchanger by the 30° array over the entire Reynolds number range. The proposed array is found more effective at comparatively low Reynolds numbers, representative of many HVAC&R applications and compact heat exchanger designs.


Author(s):  
Samsul Islam ◽  
Md. Shariful Islam ◽  
Mohammad Zoynal Abedin

The heat transfer enhancement is recycled in many engineering uses such as heat exchangers, refrigeration and air conditioning structures, chemical apparatuses, and automobile radiators. Hence many enhancing extended fin patterns are developed and used. In multi louvered fin, in this segment for multi-row fin and tube heat exchanger, an increase in heat transfer enhancement is found 58% for ReH = 350. When the Reynolds number is 1075, the temperature gradient is more distinct for greater louver angle that is the higher heat transfer enhanced for large louver angle. For variable louver angle heat exchanger, the maximum heat transfer improvement achieved by 118% Reynolds number at 1075. In the vortex generator for the delta winglet vortex generator, the extreme enhancement of heat transfer increased to 16% compared to the baseline geometry (at ReDh = 600). For a compact louvered heat exchanger, the results showed that a regular arrangement of louvered fins gives a 9.3% heat transfer improvement. In multi-region louver fins and flat tubes heat exchanger, the louver fin with 4 regions and the louver fin with 6 regions are far better than the conventional fin in overall performance. At the same time, the louver fin with 6 regions is also better than the louver fin with 4-region. The available work is in experimental form as well as numerical form performed by computational fluid dynamics.


2013 ◽  
Vol 397-400 ◽  
pp. 230-234
Author(s):  
De Fan Qing ◽  
Qing Feng Ai

The semi-elliptic cylinder shell vortex generator set in the interpolation-tubular air pre-heater was studied. And by changing the high-width Ratiov, dip angleα, attack angleβ, spacingsof vortex generator to research the heat transfer and resistance properties under different working conditions, and the optimization structure of vortex generator was determined. The heating medium of the air pre-heater is the flue gas that passes across tube outside, and the cooling air as the cooling medium in the tube longitudinal scoured. The Reynolds number range is 25000 ~ 40000. The research shows that: semi-elliptic cylinder vortex generator can obviously improve the heat transfer performance, the optimization structure of the semi-elliptic cylinder vortex generator: high-width ratiov= 0.45, attack angleβ= 65 °, dip angleα= 15 °, spans= 90 mm, the heat transfer enhancement comprehensive effect raised about 43.2%~72.6%.


Author(s):  
Jiansheng Wang ◽  
Zhiqin Yang

The heat transfer characteristic and flow structure of fluid in the rectangular channel with different height vortex generators in small scale are investigated with numerical simulation. Meantime, the properties of heat transfer and flow of fluid in the rectangular channel are compared with the channel which located small scale vortex generator. The variation law of local heat transfer and flow structure in channel is obtained. The mechanism of heat transfer enhancement of small scale vortex generators is discussed in detail. It is found that the influence of vortex generator on heat transfer is not in proportion to the size of vortex generator. What is more, turbulent flow structure near the wall, which influences the temperature distribution near the wall, induces the variety of local heat transfer. The fluid movement towards to the wall causes the heat transfer enhanced. On the contrary, the fluid movement away from the wall decreases the local heat transfer.


Author(s):  
Juan Wen ◽  
Li Yang ◽  
Cheng Ying Qi

The flow structures and heat transfer characteristics of rectangle channel with the new type of vortex generators are obtained using large eddy simulation (LES) and by the application of the hydromechanics software FLUENT6.3. The bevel-cut half-elliptical column vortex generators, which is one model of the passive heat transfer enhancement, are laid on the three-dimensional rectangle channel. The instantaneous characteristic and the variational law of various parameters, such as the velocity, the temperature, the pressure and the vorticity magnitude, is analyzed to find out the temperature stripe structure that is similar with the velocity stripe in the temperature field. A turbulent boundary layer interacting with the disturbance of the vortex generators, is investigated using a “coherent structure” type of approach. The coherent structure and the streak structure of turbulent boundary layer flow are showed and the characteristic of vortex induced by vortex generator and its influence on turbulent coherent structure are analyzed. The control of the coherent structure induced by vortex generator plays more important role in heat transfer enhancement and drag reduction. And this fow configuration is of interest in terms of both heat transfer and skin friction control. The result of simulation indicates that the turbulence coherent structure directly affects the temperature gradient at the wall and the heat transfer enhancement mechanism of vortex generator is explained. Then we can seek suitable form of vortex generator and structure parameters, in order to achieve enhanced heat transfer and flow of drag reduction.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Hamdi E. Ahmed ◽  
M. Z. Yusoff

This paper presents the laminar forced convection of Al2O3–water nanofluid in a triangular channel, subjected to a constant and uniform heat flux at the slant walls, using delta-winglet pair (DWP) of vortex generator which is numerically investigated in three dimensions. The governing equations of mass, momentum, and energy are solved using the finite volume method (FVM). The nanofluid properties are estimated as constant and temperature-dependent properties. The nanoparticle concentrations and diameters are in ranges of 1–4% and 25–85 nm, respectively. Different attack angles of vortex generators are examined which are 7 deg, 15 deg, 30 deg, and 45 deg with range of Reynolds number from 100 to 2000. The results show that the heat transfer coefficient is remarkable dependent on the attack angle of vortex generators and the volume fraction of nanoparticles. The heat transfer coefficient increases as the attack angle increases from 7 deg to 30 deg and then diminishes at 45 deg. The heat transfer rate remarkably depends on the nanoparticle concentration and diameter, attack angle of vortex generator and Reynolds number. An increase in the shear stress is found when attack angle, volume fraction, and Reynolds number increase.


Author(s):  
Safeer Hussain ◽  
Jian Liu ◽  
Lei Wang ◽  
Bengt Sundén

Measurement of endwall heat transfer around a circular cylinder with a vortex generator pair has been investigated. Steady state liquid crystal thermography is adopted. Cylinders having two different height to diameter ratios have been employed. In one case, the cylinder has one end free in the flow and in the other case it has both ends attached on the walls. Local Nusselt numbers both upstream and downstream of the cylinder with and without the vortex generator pair are calculated. Nusselt numbers in streamwise and spanwise directions for both cases with vortex generator are compared with each other as well as with corresponding base cases. It is found from the experiments that the vortex generator influences the endwall heat transfer significantly downstream of the cylinder but has a small effect in the upstream region. Moreover, for different height to diameter ratio of the cylinder different heat transfer patterns are observed downstream of the cylinder. The vortex generator pair plays its major role on the endwall heat transfer enhancement in the spanwise direction and it expands as one moves from the upstream to downstream direction. To fully understand the advantage of the vortex generator pair, thermal performance is calculated for each case and it was found that in presence of the vortex generator pair, the cylinder with shorter height to diameter ratio shows higher thermal performance. Reynolds number dependence has also been investigated and it was found that the thermal performance decreases with increasing Reynolds number for both cases having a vortex generator pair.


2018 ◽  
Vol 26 (03) ◽  
pp. 1830001 ◽  
Author(s):  
Nares Chimres ◽  
Somchai Wongwises

The performance of heat exchangers impacts industry investment, energy consumption, and pollution because the heat exchanger has been used in many industries. The use of vortex generators on the fin is the prominent method of heat transfer enhancement because the performance indexes of fins with vortex generators are greater than those of the fins without vortex generators. However, this method faces obstacles because the concepts and design instructions are still obscure. Therefore, this paper provides a summary of the publications about the use of vortex generators. The publications on the effects of traditional and alternative vortex generators that are combined with plain, wavy, and louver fins are summarized. The aim of this paper is to aggregate the publications concerned with the thermal performance and flow characteristics of the fin-and-tube heat exchanger with vortex generator using numerical and experimental investigations as the guideline for future studies.


Author(s):  
S. Ferrouillat ◽  
P. Tochon ◽  
C. Garnier ◽  
H. Peerhossaini

Compact heat exchangers are well known for their ability to transfer a large amount of heat while retaining low volume and weight. The purpose of this paper is to study the potential of using this device as a chemical reactor, generally called a heat exchanger-reactor (HEX reactor). Indeed, the question arises: can these geometries combine heat transfer and mixing in the same device? Such a technology would offer many potential advantages, such as better reaction control (through the thermal aspect), improved selectivity (through intensified mixing, more isothermal operation and shorter residence time, and sharper RTDs), byproduct reduction, and enhanced safety. Several geometries of compact heat exchanger based on turbulence generation are available. This paper focuses on one type: vortex generators. The main objective is to contribute to the determination of turbulent flow inside various geometries by computational fluid dynamics methods. These enhanced industrial geometries are studied in terms of their thermal-hydraulic performance and macro-/micro-mixing ability. The longitudinal vortices they generate in a channel flow turn the flow perpendicular to the main flow direction and enhance mixing between the fluid close to the fin and that in the middle of the channel. Two kinds of vortex generators are considered: a delta winglet pair and a rectangular winglet pair. For both, good agreement is obtained between numerical results and data in the literature. The vortex generator concept is found to be very efficient in terms of heat-transfer enhancement and macro-mixing. Nevertheless, the micro-mixing level is poor due to strong inhomogeneities: the vortex generator must be used as a heat-transfer enhancement device or as a static mixer for macro- and meso-mixing.


Author(s):  
Mohammad Rejaul Haque ◽  
Amy Rachel Betz

The present work represents a 2-D numerical investigation of forced convection heat transfer over three electronic blocks (silicon chip) in an inline arrangement with elliptical shaped vortex generators (VG-copper made) placed on top of the channel, for a range of Reynolds numbers. The block is prescribed with a 1,000 W/m2 heat flux due to heating of the electronic components installed in the CPU casing. The results show that, vortex generators could effectively enhance the heat transfer in the channel. Subsequently, the effects of Reynolds number (from 500 to 1050), the number of vortex generators (baseline, 1, 2 and 3), aspect ratio of heated block (0.125, 0.15, 0.22), and aspect ratio of vortex generators (0.3125, 0.4, 0.5) on the heat transfer and fluid flow characteristics are examined. The characteristics of the performance parameters are studied numerically with the aid of computational fluid dynamics (CFD). The 3 VG demonstrates nearly 28.35% enhancement of Nusselt number compared to the 1 VG case at Re = 479. The change in pressure drop is less at low Reynolds number compared to higher Reynolds number respective to other parameters. Increasing the aspect ratio of the block increases the convection coefficient while decreasing aspect ratio of VG increases heat transfer coefficient. This enhancement is less significant for the third block as the cooling effect is predominant close to the channel inlet. Increasing consecutive distance between the blocks, enhances the heat transfer coefficient with the penalty of additional pressure drop. However, parametric studies are conducted for the maximum heat transfer enhancement.


Sign in / Sign up

Export Citation Format

Share Document