scholarly journals Performance of an Environmentally Friendly Alternative Fluid in a Loop Heat Pipe-Based Battery Thermal Management System

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7738
Author(s):  
Marco Bernagozzi ◽  
Nicolas Miché ◽  
Anastasios Georgoulas ◽  
Cedric Rouaud ◽  
Marco Marengo

The present investigation aims to devise a thermal management system (TMS) for electric vehicles able to improve on limitations like charging time and all-electric range, together with the safety and environmental impact of the chosen thermal medium. A research gap is identified, as focus is often on addressing system thermal performance without considering that the thermal medium must not only provide suitable performances, but also must not add risks to both passengers and the environment. Thus, this work proposes an innovative cooling system including graphite sheets and a Loop Heat Pipe, filled with Novec™ 649 as working fluid, due to its exceptional environmental properties (GWP = 1 − ODP = 0) and safety features (non-flammable, non-toxic, dielectric). A three-cell module experimental demonstrator was built to compare temperatures when the proposed TMS is run with Novec™ 649 and ethanol. Results of testing over a bespoke fast charge driving cycle show that Novec™ 649 gave a faster start-up and a slightly higher maximum temperature (0.7 °C), meaning that the gains in safety and lower environmental impact brought by Novec™ 649 came without lowering the thermal performance. Finally, the TMS was tested under three different fast charge conditions (1C, 2C, 3C), obtaining maximum temperatures of 28.4 °C, 36.3 °C and 46.4 °C, respectively.

Author(s):  
Jianping Cheng ◽  
Shenlong Shuai ◽  
Renchen Zhao ◽  
Zhiguo Tang

Abstract An effective battery thermal management system (BTMS) is essential for controlling both the maximum temperature and the temperature uniformity of a battery module. In this study, a novel and lightweight BTMS for prismatic batteries based on a heat pipe is proposed. A numerical model is created to study the influence of heat transfer designs and other factors on the thermal performance of the BTMS, and the simulation results are checked experimentally. The results show that when the condensation section of the heat pipe is cooled by liquid, the maximum temperature of the battery (Tmax) is reduced by 18.1% compared with air cooling. Decreasing the coolant temperature can reduce T_max, but can also lead to an undesirable temperature nonuniformity. The T_max and the maximum temperature difference (ΔTmax) in a battery module both increase rapidly as the discharge rate rises. The Tmax and ΔTmax are lower than 40 °C and 5 °C respectively when the discharge rate of the battery is lower than 2C. Under preheating conditions in cold weather, increasing the temperature of the heating medium can improve the temperature of the batteries, but at the same time it can make the battery module's temperature more nonuniform, and also add to cost. The temperature of the heating medium should therefore be selected with care. It could be concluded that the above results can provide perspectives in designing and optimizing battery thermal management system.


Author(s):  
Shuoqi Wang ◽  
Languang Lu ◽  
Dongsheng Ren ◽  
Xuning Feng ◽  
Shang Gao ◽  
...  

Thermal management system (TMS) plays an essential part in improving the safety and durability of the battery pack. Prior studies mainly focused on controlling the maximum temperature and temperature difference of the battery pack. Little attention has been paid to the influence of the TMS on thermal runaway (TR) prevention of battery packs. In this paper, a heat pipe-based thermal management system (HPTMS) is designed and investigated to illustrate both the capabilities of temperature controlling and TR propagation preventing. Good thermal performance could be achieved under discharge and charge cycles of both 2 C rate and 3 C rate while the equivalent heat dissipation coefficient of the HPTMS is calculated above 70 W/(m2·K). In the TR propagation test triggered by overcharge, the surface temperature of the battery adjacent to the overcharged cell can be controlled below 215 °C, the onset temperature of TR obtained by the adiabatic TR test of a single cell. Therefore, TR propagation is prevented due to the high heat dissipation of the HPTMS. To conclude, the proposed HPTMS is an effective solution for the battery pack to maintain the operating temperature and improve the safety level under abuse conditions.


2018 ◽  
Vol 67 ◽  
pp. 03035 ◽  
Author(s):  
Nurhalimah Aprianingsih ◽  
Adi Winarta ◽  
Bambang Ariantara ◽  
Nandy Putra

Heat generated in an electric motor can increase the operating temperature. The excessive operating temperature will reduce the electric motor performance and shorten the service life. An appropriate thermal management system is required to reduce the electric motor operating temperature. The objective of this study is to determine the thermal performance of pulsating heat pipes which applied to the electric motor thermal management system. A prototype of electric motor thermal management system was made from an induction motor with a cartridge heater instead of a heat-generating rotor and stator. Six pieces of pulsating heat pipe were mounted using hexagonal heat pipe holder which placed inside the electric motor housing. The pulsating heat pipes are made of a copper capillary tube using acetone as working fluid with a filling ratio of 0.5. The electric power input was varied from 30 W to 150 W. The use of pulsating heat pipes can reduce the electric motor surface temperature by 55.3°C with the minimum thermal resistance of 0.151°C/W.


Heliyon ◽  
2021 ◽  
pp. e07773
Author(s):  
Danial Karimi ◽  
Md Sazzad Hosen ◽  
Hamidreza Behi ◽  
Sahar Khaleghi ◽  
Mohsen Akbarzadeh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document