scholarly journals The Characteristics and Main Controlling Factors for the Formation of Micropores in Shale from the Niutitang Formation, Wenshuicun Section, Southwest China

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7858
Author(s):  
Danlong Li ◽  
Meiyan Fu ◽  
Yun Huang ◽  
Dong Wu ◽  
Rui Xue

The characteristics of shale micro-pore development and its main influencing factors have important theoretical guiding significance for shale gas exploration and resource evaluation. In order to clarify the micro-pore development characteristics of lower Cambrian shale and the main controlling factors of micro-pore development, we used the lower Cambrian Niutitang formation shale, in the Wenshuicun section of the Guizhou Province in southwest China. The micro-pore development characteristics of the shale in the region were studied by argon ion profile field emission scanning electron microscopy and a low-temperature liquid nitrogen adsorption and desorption experimental system. The relationship between micro-pore and kerogen maceral composition, total organic carbon (TOC) content and different mineral content was analyzed in combination with mineral and geochemical characteristics. Inorganic pores (clay mineral pores, dissolution pores and pyrite intergranular pores) and micro-fractures (clay mineral shrinkage crack, tectonic fractures and overpressure fractures) were the main type of pore developed in the shale of the Niutitang formation in the Wenshuicun section, and no organic pores had developed. The pore size of shale is usually 2–50 nm, accounting for 58.33% of shale pores, e.g. mesopores. Clay mineral content has an obvious positive correlation with macropore volume and average pore diameter, and an obvious negative correlation with micropore volume. In addition, the content of feldspar in brittle minerals has a strong negative correlation with macropore volume and average pore diameter, and a strong positive correlation with micropore volume and BET-specific surface area. TOC content and the content of different kerogen macerals have no obvious correlation with the development of shale micropores in this region. It is concluded that inorganic mineral composition is the main controlling factor of micro-pore development within lower Cambrian shale, and organic matter abundance and maceral content have little influence on the micro-pore development. This study provides a case study for the characteristics of micropores in lower Cambrian shale in China.

Fractals ◽  
2019 ◽  
Vol 27 (01) ◽  
pp. 1940006 ◽  
Author(s):  
LEI ZHANG ◽  
XUEJUAN ZHANG ◽  
HAO CHAI ◽  
YAOCAI LI ◽  
YONGJIE ZHOU

Fractal dimension is an important parameter in the evaluation of tight reservoirs. For an outcrop section of the Nenjiang formation in the Songliao Basin, China, the pore structure and pore fractal characteristics of shale parasequences were investigated using fractal theory. In addition, factors causing pore structure changes were analyzed using the results of low-temperature nitrogen adsorption and scanning electron microscope (SEM) experiments. Conducive to gas migration and secondary pores development such as dissolution, results showed that nanoscale pores dominated by fracture-like morphology and consequent good internal connectivity were observed in each pore size section within the target layer. Each parasequence is characterized by a sequential upward decrease of average pore size and an upward increase of total pore volume, with an increasing number of pores from 2[Formula: see text]nm to 50[Formula: see text]nm. Pores are isolated from each other, with poor connectivity and relatively complex composition of brittle minerals and clay minerals. Main components of the brittle minerals, quartz and feldspar, occur in 20–50% and higher clay mineral content ranging from 50% to 70%. In the parasequence cycle, clay mineral gradually decreases while the brittle mineral content increases. Fractal dimension is negatively correlated with clay mineral content and positively correlated with brittle mineral (quartz and feldspar) content. The fractal dimension calculated by the imaging method and the FHH method shows an upward increasing tendency in each of the parasequence cycles. This is as a result of different phenomena, varied sediment hydrodynamic forces leading to particle size differences and increased brittle minerals resulting in microcracks, therefore, the fractal dimension of the large pores (imaging method) increases upward in the parasequence. Simultaneously, with increased content and accompanied dissolution of brittle minerals causing an increase of small pores from base to top of the parasequence, the fractal dimension of the small pores (FHH method) grows.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 527
Author(s):  
Liangwei Xu ◽  
Keji Yang ◽  
Hao Wei ◽  
Luofu Liu ◽  
Xiao Li ◽  
...  

Nanoscale pore structure characteristics and their main controlling factors are key elements affecting the gas storage capacity, permeability, and the accumulation mechanism of shale. A multidisciplinary analytical program was applied to quantify the pore structure of all sizes of Xiamaling shale from Zhangjiakou, Hebei. The result implies that Mercury injection porosimetry (MIP) and low-pressure N2 curves of the samples can be divided into three and four types, respectively, reflecting different connectivity performances. The maximum CO2 adsorbing capacity increases with increasing total organic carbon (TOC) content, pore volume (PV), and surface area (SA) of the micropores are distributed in a three-peak type. The full-scale pore structure distribution characteristics reveal the coexistence of multiple peaks with multiple dominant scales and bi-peak forms with mesopores and micropores. The porosity positively correlates with the TOC and quartz content, but negatively correlates with clay mineral content. Organic matter (OM) is the main contributor to micropore and mesopore development. Smectite and illite/smectite (I/S) assist the development of the PV and SA of pores with different size. Illite promotes the development of the nanoscale PV, but is detrimental to the development of the SA. Thermal maturity controls the evolution of pores with different size, and the evolution model for the TOC-normalized PVs of different diameter scales is established. Residual hydrocarbon is mainly accumulated in micropores sized 0.3 to 1.0 nm and mesopores sized 40 nm, 2 nm and less than 10 nm. Since the samples were extracted, the pore space occupied by residual hydrocarbon was released, resulting in a remarkable increase in PV and SA.


2020 ◽  
Author(s):  
Hongyang Jiang ◽  
Zhenxue Jiang ◽  
Xin Li

<p>Compared with marine shale with plentiful research and successful exploration, fewer studies on transitional shale reservoirs limit further exploitation of shale gas. In this paper, comparative analysis, between Lower Silurian marine shale and Upper Permian transitional shale in the Upper Yangtze region, is carried out to analysis pore features of both shales and the main controlling factors, which can provide theoretical guidance for further exploration. A combination of methods is ultilized in terms of organic-chemistry geology measurement, X-ray diffraction (XRD), high-pressure mercury injection, gas adsorption, and focused ion beam milling and scanning electron microscopy (FIB-SEM). The results show that Lower Silurian marine shale and Upper Permian transitional shale have similar organic matter (OM) abundance (2.72% and 2.31%) and thermal degree (2.56wt%Ro and 2.68wt%Ro). However, the kerogen of Lower Silurian shale is type I derived from algae and plankton, while that of Upper Permian shale is mainly type III from higher plant debris. As for mineral composition, Siliceous minerals (> 43wt%) account for the majority in Lower Silurian shale, while clay (> 57wt%) is the main mineral in Upper Permian shale. Variations in material basis trigger to differences in pore characteristics between the two shales. Firstly, the pores in Lower Silurian shale are mostly hosted by OM with an average pore diameter of 7.94 nm, while Upper Permian shale mainly develops pores associated with clay minerals with an average pore diameter of 28.60nm. Moreover, Lower Silurian shale presented relatively higher pore properties than Upper Permian in both average pore volume (0.020ml/g and 0.015ml/g) and average pore surface area (7.99 m<sup>2</sup>/g and 1.2 m<sup>2</sup>/g). Various factors lead to the differences in pore types and pore properties between the two shales. For marine shale, OM with thermal convertibility tend to be mobilizable and porous. OM-hosted pores are the dominated type which is controlled by OM abandauce and thermal degree. However, in transitional shale, OM is featured by phase stability without porous feature. Pores associated with clay flakes are the main type which is controlled by the specifc material composition. Hence, the discrepancies of pore properties may be attributed to material diversities between marine shale and transitional shale.</p>


2021 ◽  
Vol 8 (5) ◽  
pp. 202271
Author(s):  
Shengwei Wang ◽  
Xijian Li ◽  
Haiteng Xue ◽  
Zhonghui Shen ◽  
Liuyu Chen

The migration law of shale gas has a significant influence on the seepage characteristics of shale, and the flow of the gas is closely related to the pore structure. To explore the influence of shale pore parameters on permeability in different diffusion zones, the pore structure of the shale in the Niutitang Formation in Guizhou, China, was analysed based on liquid nitrogen adsorption experiments and nuclear magnetic resonance experiments. The relationship among fractal dimension, organic carbon content (TOC) and BET-specific surface area was analysed based on the fractal dimension of shale pores calculated using the Frenkel–Halsey–Hill model. Shale permeability was calculated using the Knudsen number ( Kn ) and permeability equation, and the influence of the fractal dimension and porosity in different diffusion zones on shale permeability was analysed. Previous studies have shown that: (i) the pores of shale in the Niutitang Formation, Guizhou are mainly distributed within 1–100 nm, with a small total pore volume per unit mass, average pore diameter, large BET specific surface area and porosity; (ii) fractal dimension has a negative correlation with average pore diameter and TOC content and a quadratic relationship with BET specific surface area; and (iii) permeability has a positive correlation with Kn , porosity and fractal dimension. In the transitional diffusion zone, fractal dimension and porosity have a significant impact on permeability. In the Knudsen diffusion zone, porosity has no obvious effect on permeability. The methodologies and results presented will enable more accurate characterization of the complexity of pore structures of porous media and allow further understanding of the seepage law of shale gas.


Sign in / Sign up

Export Citation Format

Share Document