scholarly journals Performance Comparison of Control Strategies for Plant-Wide Produced Water Treatment

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 418
Author(s):  
Leif Hansen ◽  
Mads Valentin Bram ◽  
Simon Pedersen ◽  
Zhenyu Yang

Offshore produced water treatment (PWT) accounts for cleaning the largest waste stream in the offshore oil and gas industry. If this separation process is not properly executed, large amounts of oil are often directly discharged into the ocean. This work extends two grey-box models of a three-phase gravity separator and a deoiling hydrocyclone, and combines them into a single plant-wide model for testing PWT control solutions in a typical process configuration. In simulations, three known control solutions—proportional-integral-derivative (PID) control, H∞ control, and model predictive control (MPC)—are compared on the combined model to evaluate the separation performance. The results of the simulations clearly show what performance metrics each controller excels at, such as valve wear, oil discharge, oil-in-water (OiW) concentration variance, and constraint violations. The work incentivizes future control to be based on operational policy, such as defining boundary constraints and weights on oil discharge, rather than maintaining conventional intermediate performance metrics, such as water level in the separation and pressure drop ratio (PDR) over the hydrocyclone.

2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Novena Lany Pangestu ◽  
Nurulbaiti Listyendah Zahra ◽  
Ariyanti Sarwono ◽  
I Wayan Koko Suryawan

Produced water generated by the oil and gas industry, when treated properly, will produce water that is ready to be reused, such as for watering plants. This planning is done by treating the produced water with Corrugated Plate Interceptor (CPI) and Ultra Filtration units. This research aims to analyze the design details needed in the recycling of produced water with CPI and Ultra Filtration units. After determining the design criteria used, the dimensions for each unit are obtained. Data was collected using secondary data directly from the study site and quantitative method was used for data analysis. The land area for one CPI unit requires 55 m2 with a volume of 110 m3. The Reynolds number and Froude number for CPI units meet the design criteria with 419.8 and 0.24, respectively. The ultra-filtration unit was selected with a Flux specification of 0.15 m3/m2.hour with an operational duration of 24 hours. The results of processing with the CPI unit can at least produce oil and fat effluent of 0.038 mg/L, with the threshold for water quality is 1 mg/L. Produced water treatment planning with CPI configuration and UF membrane with storage tank requires a total land area of 63.97 m2..


Membranes ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 68 ◽  
Author(s):  
Kasper L. Jepsen ◽  
Mads V. Bram ◽  
Leif Hansen ◽  
Zhenyu Yang ◽  
Steven M. Ø. Lauridsen

In the offshore oil and gas sector, produced water is discharged into the sea, but increasing environmental concerns and stricter governmental regulations require new technologies to be considered. Membrane filtration is a promising technology to improve separation, but fouling of the membranes causes a significant reduction in flow capacity. To reduce fouling, optimization of the backwashing parameters is given much attention. Comprehensive and time-consuming experiments are used to model the effect of backwashing, but most methods neglect time varying features present in the offshore produced water treatment train. In this paper, a backwashing scheduling algorithm is proposed, which dynamically selects the filtration and backwashing durations to maximize the average net permeate production. The proposed algorithm is tested on a lab-scaled pilot plant, where it was able to adapt as irreversible fouling accumulated and the OiW concentration changed. The paper concludes that the removal rate of oil fouling was observed to be dependent on the rate at which the backwashing pressure could be established. As the proposed method online adapts to the current conditions, it can improve the filtration capacity compared to cases with constant backwashing and filtration durations throughout the lifetime of the facilities.


2018 ◽  
Vol 80 (3-2) ◽  
Author(s):  
Tutuk Djoko Kusworo ◽  
Nita Aryanti ◽  
Qudratun Qudratun ◽  
Via Dolorosa Tambunan ◽  
Natalia Rosa Simanjuntak

Produced water is the side product of the oil and gas processing. This water is different from any common water because it contains the dangerous chemical substances and matters in the oil and gas. The usage of produced water and unprocessed waste of produced water contains a lot of dangerous substances that can endanger the environmental stability. The right processing is all that it needs to make produced water that is drinkable or usable. The membrane technology is one of the alternative waste water treatment technologies. But, as in the usage, it still lacks in the field of fouling and cannot fulfilled the specification of usable water. Thus, this becomes the reason that bases this research. In this paper, there will be made a polyethersulfone membrane with an inversion phase method and an addition of Nano-antifouling compound, ZnO. The experimental results show that the TDS value of produced water decreased from 6600 into 1500 mg/L. Nano ZnO addition of 1.5 wt-% increase the permeate flux from 28 to 43 L/m2.hr. The UV irradiation on the membrane increase the initial flux from 28 to 48 L/m2.hr and also increase the TDS rejection from 16 to 25%. This shows that by using Polyethersulfone (PES)-ZnO membrane, we can increase the separation performance. Hence, this method is suitable for processing the produced water into usable water.


2009 ◽  
Vol 170 (2-3) ◽  
pp. 530-551 ◽  
Author(s):  
Ahmadun Fakhru’l-Razi ◽  
Alireza Pendashteh ◽  
Luqman Chuah Abdullah ◽  
Dayang Radiah Awang Biak ◽  
Sayed Siavash Madaeni ◽  
...  

2021 ◽  
Author(s):  
Xiang Shi ◽  
Julia R. de Rezende ◽  
Kenneth Sorbie

Abstract Reservoir souring is a long-standing issue for the oil and gas industry caused by sulfate-reducing microorganisms (SRM) producing H2S from sulfate ions. In this work, we investigated the connections between the development of souring and the change in three key microbial ecology metrics: the abundance, alpha diversity and community structure of a souring microbiota under the biocide treatment of 100 ppm glutaraldehyde (henceforth referred to as GA). These are studied in sand-packed flow-through bioreactors during and after the biocide treatment using cutting-edge DNA assays. Our study suggests that the rebound of microbial sulfide production after the 100 ppm GA treatment is closely associated with the recovery in microbial abundance and microbial alpha diversity. The study also shows that 100 ppm GA treatment may lead to a measurable shift in the SRM community structure. By comparing the effluent microbial community with the sand microbial community, the study suggests that the change in alpha diversity of the produced water microbial community might be an early warning for the sulfide breakthrough due to souring recurrence in practice. This work explores the relationship between souring and the underlining microbial community behaviours in response to the 100 ppm GA treatment and, to characterise these changes, we propose measurable metrics. A conceptual model is also proposed describing the near-term biological process behind the biocide treatment-recovery cycle in a souring scenario. Finally, this work highlights the potential applications and caveats of harnessing the increasingly available field microbial community data for the improvement of souring modelling and field souring control strategies.


2018 ◽  
Vol 24 (2) ◽  
pp. 139-147 ◽  
Author(s):  
Tutuk Kusworo ◽  
Hadiyanto Hadiyanto ◽  
Deariska Deariska ◽  
Nugraha Lutfi

Produced water is the wastewater generated from the process of exploration in oil and gas production, which needs special treatment. A membrane with cellulose acetate is widely used for produced water treatment, but further developments and improvements are still required. Therefore, it is important to determine the factors of separation efficiency of an ultrathin cellulose acetate membrane by assessing the influence of the composition of the dope solution. The response surface methodology was employed to determine the optimal conditions for this application. The investigations were conducted by varying the cellulose acetate polymer concentration at 18-20 wt.%, polyethylene glycol 4000 at 2-3 wt.% and nonsolvent addition at 3-5 wt.%. The evaluation of membrane performance for the produced water treatment was performed in a dead-end filtration cell with permeate water flux and rejection parameters for turbidity, total dissolved solids, Ca2+, Mg2+ and sulfides of produced water upstream and downstream of the membrane. The optimal composition of the dope solution was: 19 wt.% of cellulose acetate, 3 wt.% of polyethylene glycol, and 5.67 wt.% of non-solvent.


2021 ◽  
Author(s):  
Layla Ogletree ◽  
Hongbo Du ◽  
Raghava Kommalapati

The treatment of shale oil & gas produced water is a complicated process since it contains various organic compounds and inorganic impurities. Traditional membrane processes such as reverse osmosis and nanofiltration are challenged when produced water has high salinity. Forward osmosis (FO) and membrane distillation as two emerging membrane technologies are promising for produced water treatment. This chapter will focus on reviewing FO membranes, draw solute, and hybrid processes with other membrane filtration applied to produced water treatment. The barriers to the FO processes caused by membrane fouling and reverse draw solute flux are discussed fully by comparing some FO fabrication technologies, membrane performances, and draw solute selections. The future of the FO processes for produced water treatment is by summarizing life cycle assessment and economic analyses for produced water treatment in the last decade.


Sign in / Sign up

Export Citation Format

Share Document